Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method

Célestine Delbart, Danièle Valdés-Lao, Florent Barbecot, Antoine Tognelli, Patrick Richon, Laurent Couchoux

PII: S0022-1694(14)00105-X
DOI: http://dx.doi.org/10.1016/j.jhydrol.2014.02.008
Reference: HYDROL 19399

To appear in: Journal of Hydrology

Received Date: 5 November 2013
Revised Date: 22 January 2014
Accepted Date: 1 February 2014

Please cite this article as: Delbart, C., Valdés-Lao, D., Barbecot, F., Tognelli, A., Richon, P., Couchoux, L., Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method, Journal of Hydrology (2014), doi: http://dx.doi.org/10.1016/j.jhydrol.2014.02.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Temporal variability of karst aquifer response time established by the
sliding-windows cross-correlation method

Revised version of HYDROL15869

Céleste Delbart 1*, Danièle Valdés-Lao 2, Florent Barbecot 3, Antoine Tognelli 1, Patrick Richon 1, Laurent Couchoux 4

1 CEA, DAM, DIF, F-91297 Arpajon, France. UMR IDES 8148, Université Paris-Sud-CNRS, France
2 UPMC Univ. Paris 06, UMR 7619 Sisyphe, Case 105, 4 place Jussieu, F-75005 Paris, France
3 GEOTOP, Université du Quebec à Montréal, Montréal, Québec H3C 3P8, Canada
4 CEA, DAM, Valduc, 21120 Is-sur-Tille, France

* Corresponding author. Tel : 33(0)1.69.15.67.53; Fax : Fax: +33-(0)1 69 15 49 05 . E-mail address: celestine.delbart@gmail.com; Affiliation details : CEA, DAM, DIF, F-91297 Arpajon, France and UMR IDES 8148, Université Paris-Sud-CNRS, France
Abstract

We study the temporal variability of water transfer through the infiltration zone of a karst aquifer by estimating the impulse response of the system using cross-correlogram analyses between rainfall and piezometric level time series. We apply a sliding-window cross-correlation method, which calculates cross-correlograms on partially superposed short time series windows. We apply this method for rainfall and piezometric level time series at six boreholes in a fractured karstic aquifer located in Burgundy, France. Based on cross-correlogram functions, we obtain a time series of response time. At most of the boreholes, the cross-correlation functions change over time, and the response times vary seasonally, being shorter during the summer. This unusual structure can be partly explained by the seasonal variability in rainfall intensity, which is higher during the summer (May to September), inducing the seasonal behaviour of the epikarst. During the summer, when rainfall intensity is higher, the epikarst is more easily and quickly saturated. This induces an increase in lateral water transfer within the epikarst and an increase in concentrated fast flows. We also show that the response time seems to tend towards a limit which represents the maximum saturation of the epikarst.

Keywords: Karst aquifer; time series analysis; sliding-windows cross-correlation; response time.

1. Introduction

Karst aquifers are usually characterised by heterogeneous physical properties and multiple transfer velocities due to the presence of open conduits created by the dissolution of calcite (Aquillina et al., 2005; White, 2002). However, regardless of the degree of
karstification and the extent of the conduit network, aquifers present a distribution of transfer velocity from low and diffuse flow to fast and conduit flow (Atkinson, 1977; Larocque et al., 1998; White, 1969).

Numerous methods have been proposed to decipher and describe the functioning of karst aquifers. Classical techniques include geologic and geomorphologic observations, pumping tests (McConnell, 1993; Thrailkill, 1988), tracer tests (Goldscheider et al., 2008; Käss, 1998; Kogovsek and Petric, 2003; Smart, 1988), analysis of chemographs of major chemicals, stable isotopes and carbon-13 (Aquilina et al., 2005; Emblanch et al., 2003), analysis of recession curves (Atkinson, 1977; Birk and Hergarten, 2010; Kovács and Perrochet, 2008; Mangin, 1984; Milanovic, 1981; Shevenell, 1996), spectral and correlation analysis, wavelet analysis (Angelini, 1997; Jukić and Denič-Jukić, 2011; Labat et al., 2000; Larocque, 1997; Mangin, 1975; Panagopoulos and Lambrakis, 2006; Rahnemaei et al., 2005), geophysical investigation (Jacob et al., 2008), reservoir models (Fleury et al., 2007; Geyer et al., 2008; Jukić and Denič-Jukić, 2009; Tritz et al., 2011), spring hydrograph models from spectral analysis (Jukić and Denič-Jukić, 2004) and numerical and physical models (Dreybrodt, 1996; Dreybrodt et al., 2005; Eisenlohr et al., 1997; Scanlon et al., 2003).

The karst investigations previously presented have defined a basic conceptual model of the karst system in two parts: the infiltration, or unsaturated, zone and the saturated, or phreatic, zone. The infiltration zone consists of two parts: the epikarst and the transition zone. The epikarst is the uppermost zone of carbonate rocks that are particularly corroded or fractured, due to stress release, weathering and dissolution (Klimchouk, 2004). The contrast in permeability between the epikarst and the transition zone gives the epikarst the ability to regulate water infiltration and storage (Aquilina et al., 2005; Bakalowicz, 2010; Mangin, 1975; Perrin et al., 2003). The infiltration from the epikarst towards the transition zone is divided into two components: a
slow seepage from the base of the epikarst and a concentrated flow through high conductivity conduits. The lateral component flow is significant in the epikarst, allowing the water to converge towards vertical fissures (Perrin et al., 2003). The transition zone is the zone between the epikarst and the saturated zone. The flow is essentially vertical. Two types of water flow coexist: slow flow in small fractures and quick flow in large conduits.

The saturated zone can be divided into two subparts: conduits that mostly drain water towards the karst spring and a low permeability volume where water is stored. The storage capacity of the saturated zone is still in question, and several models have been proposed: a model in which water is stored in matrices or fractures (Drogue, 1974; Mudry, 1990) and a model in which water is stored in karst voids (Mangin, 1975).

The goal of this project is to characterise the functioning of a karst aquifer located in Burgundy, France, to protect water resources from accidental pollution. In this paper, we analyse the seasonal variability of the impulse response of this aquifer. We determine the impulse response of the karst aquifer from cross-correlation analyses between rainfall and piezometric levels and adapt this method to study the variability of the impulse response over time with the application of cross-correlation analyses over three-month periods by sliding windows.

Correlation and spectral analyses are methods based on statistical tools developed principally by Jenkins and Watts (1968) and Box et al. (1994) and adapted to karst systems by Mangin (1975). A karst aquifer can be viewed as a filter transforming an input signal into an output signal by a transfer function (Mangin, 1984; Mathevet et al., 2004; Walliser, 1977). Once defined, this function can be interpreted to define the functioning, organisation and structure of karst aquifers.

Two types of correlation analyses are typically used: auto-correlation and cross-correlation. The first analysis characterises the individual structure of the time-series and its
linear dependency over a period of time. The second analysis characterises the link between
the input and output signals and usually considers rainfall as an input signal and discharge at a
spring as an output signal (Mangin, 1975). This cross-correlation is the picture of the impulse
response of a karst system, if the rainfall can be considered random. From this analysis, the
average response time of the aquifer to a rainfall event can be computed.

Historically, in karst aquifers, spectral and correlative analyses are conducted between
precipitation and spring discharge, giving information on the entire system. Some authors use
these methods for other types of time series. From piezometric levels, they obtain information
at several locations of the aquifer to evaluate the impact of unsaturated or epikarstic zones.
Some authors propose to adapt this method to study the mass transfer in aquifers using
conductivity (Bailly-Comte et al., 2011; Larocque et al., 1998), turbidity (Amraoui et al.,
2003; Bailly-Comte et al., 2011; Bouchaou et al., 2002; Massei et al., 2006) and temperature
(Bailly-Comte et al., 2011) time series. Some hydrogeologic processes are underlined by a
temporal lag between piezometric and geochemical variation, such as surface water arrival
(Hanin, 2010).

The size of time series can vary depending on the goal of the study. Previous studies on
long periods (pluri-annual time series) have given global information on the system (Andreo
et al., 2006; Larocque et al., 1998; Pulido-Bosch et al., 1995; Rahnemaei et al., 2005). Some
authors compared several hydrological cycles and analysed the variability of the impulse
response depending on the cumulative precipitation (Hanin, 2010; Larocque et al., 1998). Lee
et al. (2006) chose three-month periods, and Larocque et al. (1998) divided the hydrological
year along the low and high water table periods. Both authors established that the seasonal
variability of the impulse response provides a picture of the seasonal variations of the water
table (variability of unsaturated zone thickness, variability of network saturation). A method
to study the temporal variation of properties within the aquifer was proposed by Bailly-Comte
et al. (2011). They used a sliding cross-correlogram method between temperature and specific conductivity time series and established that residence time variations are connected with flow (high and low flow).

In this paper, we analyse the temporal variability of the impulse response using the sliding cross-correlogram method between rainfall and piezometric level time series to interpret temporal variability in seasonal hydrological processes.

First, we discuss the study area, data acquisition and the sliding cross-correlation method. We then apply this method to study the temporal variation of the response time and discuss the implications for understanding the physical mechanisms involved in this karst aquifer.

2. Study area

The study area is located in Burgundy, 30 km to the northwest of Dijon in eastern France (Fig. 1). The study zone is on the catchment of the Douix de Léry River (Fig. 1). This area is approximately 40 km², with a maximum altitude of 501 m NGF and a minimum altitude of 336 m NGF. The land in this catchment is composed of forest (82.5% of total surface), agricultural land (13% of total surface) and urban area (4.5% of total surface). The urban area, located on the north of the study site (Fig. 1), is principally composed of parking lots, roads and buildings, which cause runoff and some preferential zones of infiltration downstream of the urban area.

The climate is continental. The average atmospheric temperature is approximately 9.7°C, with a maximum temperature in June, July and August, and the cumulative rainfall by hydrological cycle ranges between 689 mm and 1214 mm, with an average of 955 mm (1992-
From June 2007 to October 2012 (the period of study), the cumulative rainfall does not present significant inter-annual changes. The average cumulative rainfall in a hydrological cycle is 916 mm, with a standard deviation of 55 mm. The rainiest hydrological cycle is October 2011-October 2012, with a cumulative rainfall of 978 mm, close to the average over the 1992-2012 period. The least rainy hydrological cycle is October 2010-October 2011, with 832 mm of cumulative rainfall, 13% less than the average values of the last twenty years. The monthly cumulative rainfall is not seasonally distributed. The average intensity of rainfall, in mm/h, which is defined as the average intensity of rainfall in mm/h without taking into account the intensities equal to zero, varies seasonally. The intensity of rainfall is highest in July and August and lowest in January and February (Fig. 2).

The geologic section is composed of tabular Jurassic limestones interspersed by marls, allowing the development of two superposed aquifers. In this publication, only the upper one will be monitored and studied. The subsurface is composed of several layers of limestone: Comblanchien, oolitic and oncholite limestones underlain by marls of the Upper Bajocian formation (Fig. 1). The thickness of the limestone layer varies from 0 m (spring location) to 70 m, depending on the location. The studied aquifer is located in the oncholite limestone layer.

The limestones are characterised by three types of porosity. Matrix porosity is related to the internal structure of the limestone, fracture porosity reflects the tectonic history of the region, and the conduit porosity is due to the dissolution of the calcite. Primary porosity has been studied in the laboratory. Permeability and porosity measurements were measured using a non-steady-state air permeameter and the mercury intrusion method, respectively, in several limestones. Primary porosity is low, with a maximum of 16% in the oolitic limestone. From
the marls to the top of oolitic limestone, the porosity, the permeability and the pore size increase. The total porosity varies from 4 to 16%, the effective porosity from 2 to 7% and the average hydraulic conductivity of limestone is 4.10^{-8} m·s$^{-1}$. A higher density of stylolites is noticed in the oncolites limestone layer, increasing the permeability of the limestone. In the Comblanchien limestone, the total porosity is approximately 5%, but the effective porosity and permeability approach zero.

The fracture porosity is apparent in the field or in rock cores. This porosity is characterised by high heterogeneity, in either size or density. The fracture openings vary from millimetre-scale up to 20 cm, with an average of 3 cm for 654 measured fractures. The average distance between two fractures is approximately 2 m.

The conduit porosity is linked to the dissolution of carbonate rock. In the field, some karst conduits have been observed; their size can be as large as a few metres (5 m). No underground cavities are known. Some artificial flow tracings have been done on the site, giving a modal velocity which varies from $2x10^{-4}$ to $6x10^{-3}$ m·s$^{-1}$.

The thickness of the soil is low and varies between 0.20 to 1.60 m. The soil surface characteristics were investigated in situ. We measured the hydraulic conductivity at saturation using a double-ring infiltrometer to be between $8x10^{-5}$ and $1x10^{-3}$ m·s$^{-1}$. We determined the hydraulic conductivity of near-saturated soils using tension disc infiltrometers and found that it varies between $4x10^{-5}$ and $1.4x10^{-4}$ m·s$^{-1}$. The high values of hydraulic conductivity induce a low runoff effect and a high ratio of vertical transport. The epikarst is located under the soil and is characterised by a high density of fractures compared with the carbonate located below. Its thickness varies from 5 to 10 m, depending on the location.
3. Data acquisition

We monitored the piezometric levels at six boreholes from June 2007 to September 2012, with an acquisition time interval of 1 h. The locations of the measurement stations are shown in Fig. 1, and key characteristics of each site are presented in Table 1 (altitude, dominant land use, unsaturated zone thickness). Piezometric levels are measured with Mini-Diver™ probes compensated for atmospheric pressure using a barodiver (Schlumberger Water Service). The accuracy of the measurements are ±1 cm H₂O (borehole A1, C2, D1, D35, S3) and ±3 cm H₂O (borehole S3), depending on the amplitude of piezometric level variation. Due to minor technical problems, some of the time series of piezometric levels include data gaps (a maximum of 5% of the complete time series).

The rainfall time series was supplied by Météo-France at Saint Martin du Mont station, located 17.6 km from the S3 borehole. Precipitation was recorded hourly.

4. Auto-correlation, cross-correlation and sliding-window cross-correlation methods

4.1 Auto-correlations and cross-correlations

A short explanation of these statistical methods is presented below. Further demonstrations and theoretical analyses have been established by Box et al. (1994), Jenkins and Watts (1968) and Mangin (1984). The auto-correlation function of a time series quantifies the linear dependency of successive values over a time period and can be written as:
For $k>0$,

$$C(k) = \frac{1}{n} \sum_{i=1}^{n-k} (x_i - \bar{x})(x_{i+k} - \bar{x}) \quad (1)$$

$$r(k) = \frac{C(k)}{C(0)} \quad (2)$$

where $r(k)$ is the auto-correlation function, $C(k)$ is the correlogram, k is the time lag ($k=0$ to m), n is the length of the time series, x_i is the value of the studied variable at time t, and m is the cutting point (Box et al., 1994). The cutting point determines the interval in which the analysis is conducted. It is necessary that $m \leq n/3$ to define $C(k)$ for each k with the same number of data.

For a random variable, this function, $r(k)$, decreases very quickly and reaches zero for short time lags. To compare the inertia of signal, Mangin (1984) defines the memory effect as the time lag required for the auto-correlation function to reach a predefined value, which is usually 0.2.

The cross-correlation function is used to establish relationships between the input and output time series and can be written as:

For $k>0$:

$$C_{xy}(k) = \frac{1}{n} \sum_{i=1}^{n-k} (x_i - \bar{x})(y_{i+k} - \bar{y}) \quad (3)$$

$$r_{xy}(k) = \frac{C_{xy}(k)}{\sigma_x \sigma_y} \quad (4)$$
where k is the time lag; n is the length of the time series; x_t and y_t are input and output time series, respectively; $r_{xy}(k)$ is the cross-correlation function; σ_x and σ_y are the standard deviations of the time series; and $C_{xy}(k)$ is the cross-correlogram (Box et al., 1994).

If the cross-correlogram function is not symmetrical and if $r_{xy}(k)$ shows maximum or minimum for a positive lag, the input signal influences the output signal. If the input time series is random, the cross-correlation function corresponds to the impulse response (Box et al., 1994).

The response time is the lag time that corresponds to the maximum of the cross-correlation function. The response time related to the cross-correlation between rainfall and discharge or piezometric level corresponds to the mean response time of the karst aquifer to a rainfall event (Mangin, 1984).

4.2 Sliding window cross-correlation method

To highlight the seasonal variability of the impulse response, we propose to adapt cross-correlation method. Using the sliding window cross-correlation method between rainfall and piezometric level allows us to study the temporal evolution of the relationship between the input and output time series.

The sliding-window cross-correlation method consists of slicing the input (precipitation) and the output (piezometric level) time series with partially superposed windows. For each window, the cross-correlogram function between rainfall and piezometric level is calculated, and the response time is determined (Fig. 3). We then obtain a time series of response time.
The length and lag of windows have to be chosen appropriately depending on the study (goal of study and frequency of events). Here, we slice the time series into “three-month periods” lagged by one-and-a-half months to show the presence of seasonal variability.

To be acceptable, a cross-correlation function has to be characterised by a significant correlation at the 95% confidence level, which means a correlation coefficient, r(k), superior to the standard error $\frac{2}{\sqrt{N}}$, where N is the number of values in the data set (Diggle, 1990; Lee et al., 2006).

The sliding window cross-correlation method requires a high frequency of rainfall events and reactive piezometric time series throughout the year.

5. Results

First, we present and analyse the time series of rainfall and piezometric level as a whole (2007-2012). Second, we apply the sliding window cross-correlogram method to study the temporal variability of the relationship between rainfall and water level.

5.1 Rainfall and piezometric level time series description

The monitoring in the field gives the piezometric level every hour at six boreholes for nearly six years (Fig. 4). The high-frequency variations in the piezometric level indicate that these six boreholes are reactive, meaning the piezometric level varies after a rainfall event throughout the year. The fast response time is probably partly due to the runoff and preferential zone of infiltration, linked to the urban area. Nevertheless, some boreholes located in forest areas are also characterised by short response times. A very fast transfer velocity in karst conduits with a low dependence on evapotranspiration could explain the short time
response events throughout the year. The high frequency of recharge events allows us to apply
the sliding window cross-correlogram method.

5.2 Application of the sliding-window cross-correlation method

The sliding-window cross-correlation method was performed between the rainfall and
the piezometric level at six boreholes during the period of June 2007-September 2012 with
three-month period windows and a lag of 1.5 months. We obtained 42 cross-correlogram
functions.

The frequency of recharge events has to be enough for a three-month period because it
influences estimates of cross-correlation functions between rainfall and spring discharge
(Eisenlohr et al., 1997). At this site, there is an average of 17 rainfall events (rough count)
over a three-month period, with a minimum of 11 and a maximum of 26. Furthermore, the
input time series is supposed to be random to interpret the cross-correlation as the impulse
response of the system. The rainfall auto-correlation is calculated for each three-month
window. Most of the time, the rainfall auto-correlation functions decrease sharply for lag
values close to zero. The maximum memory effect for an r(k) of 0.2 is 13 h, and the average
memory effect is 4 h. Therefore, we consider rainfall to be approximately random for each
window.

The application of the sliding cross-correlation on the studied period gives a maximum
of 41 windows for each borehole. Due to the data gap in the time series, we obtain 39 to 41
cross-correlograms, depending on the borehole. Furthermore, we do not take into account
windows when the correlation coefficient is not significant (less than 0.043; significant
correlation at the 95% confidence level). We note that some cross-correlation functions
present several peaks, which could highlight the existence of multiple flows within the aquifer
(Massei et al., 2006). However, the characterisation of multiple flows is beyond the scope of this study. Therefore, we focus on the fast transfer in the karst aquifer using only the first correlation peak.

At the end of this pre-treatment, the time series of the response time is composed of 32 to 41 values. The response time is not constant during the year (Fig. 5) but remains short, between 5 to 140 h (Table 2). For each borehole, we observe a high variability in response time. For example, the response times of the A1 borehole vary between 5 and 42 h, and those of the F7 borehole vary between 20 and 107 h. For the D1, D35, F7, C2 and A1 boreholes, the response time varies seasonally, with lower values during the summer (Fig. 5 and 6). This relationship is unusual and differs from the literature. Usually, the response time is shorter during the high water period (Larocque et al., 1998; Lee et al., 2006). The response time is less organised for the S3 borehole (Fig 5), this could be explained by the environment close to the borehole where there is runoff surfaces.

6. Discussion

The sliding cross-correlation between rainfall and piezometric level shows that the response time is shorter during the summer. Previous studies have also reported temporal variations in response time. Lee et al. (2006) showed that the response time is shorter during wet seasons in a chalk aquifer located in Southern England. They partially explain this evolution by seasonal variation in unsaturated zone thickness, with a major increase in time lag when the water table is below a critical depth. In this study, the relationship is reversed; the response time is shorter when the unsaturated zone is thicker (Fig 7). Therefore, the seasonal variation in response time is not a consequence of the decrease in distance between
soil and the water table but is more likely due to a variability of the transfer velocities in the
unsaturated zone.

Seasonal variability in the cross-correlation functions was observed by Larocque et al. (1998). These authors explained this evolution by the fact that during the high-water period, the water levels are higher, flooding some highly karstified fractures that transmit the pressure pulse more rapidly and directly. During the low-water period, these channels are unsaturated, and the pressure pulse is transmitted more slowly and homogeneously in the saturated zone through deeper and narrower fractures. In the present study, the response time is slower during the low-water period (Fig. 7), but a variability in the transfer velocity depending on the saturation of conduits or fractures is conceivable.

The saturation of the unsaturated zone depends on rainfall characteristics. Precipitation data do not show a high seasonal variability in the monthly rainfall quantity (Fig. 5). Nevertheless, the rainfall intensity varies seasonally, with a higher intensity during the summer period (June, July and August) (Fig. 2), where the response time is shorter (Fig. 6). Therefore, we show a link between rainfall intensity and response time at most of the boreholes: when the rainfall intensity increases, the response time decreases (Fig. 8).

The results therefore show that the seasonal variability in the impulse response, and more precisely in the response time, is influenced by the seasonal variability of the input forcing (precipitation) and its effect on the hydrological process.

From the results, a conceptual model of the aquifer behaviour is drawn, particularly for the epikarst. The epikarst is the upper part of the infiltration zone where the permeability and the porosity are high in comparison to the rock underneath (Klimchouk, 2004). The variability of porosity and permeability induces the development of an epikarstic aquifer if the input flow, the efficient rainfall, is higher than the output flow, the water flow from the epikarst towards the transition and saturated zone (Mangin, 1975). There are two types of output flow:
(1) a “low” or “diffuse” flow by percolation to the base of the epikarst, characteristic of low permeability volumes and (2) the “fast” or “concentrated” flow by conduits or large fractures. The concentrated flow occurs when the epikarst is sufficiently saturated to allow lateral transfers that drive water in the conduits (Aquilina et al., 2005; Puech and Jeannin, 1997; Williams, 2008). Furthermore, Trček (2007) shows that the epikarst zone discharges dependent of the water storage volume and thus of the epikarst saturation; if the added volume of water is large, some of the water could be rapidly drained through large fractures into the epikarst conduit network. Thus, we can assume that the variability of the average water velocity in the infiltration zone depends on the epikarst saturation.

During the winter, and when a rainfall event occurs, it usually rains continuously during several days at a low intensity. Consequently, the difference between input and output flows of the epikarst is assumed to be small. It therefore takes more time to fill the epikarst aquifer, which induces a retardation of the "fast" transfer by conduits.

During the summer, the rainfall intensity is high and exceeds the output flow of the epikarst, which is rapidly saturated. Lateral flows occur rapidly in the epikarst and concentrate the transfer of water in preferential paths with a high permeability, inducing a “fast” transfer. In addition, the higher the rainfall intensity, the higher the piezometric level in the epikarstic aquifer. In the epikarst, the porosity and permeability increase exponentially towards the surface (Perrin et al., 2003). Thus, during high intensity rainfall events, some large fractures are flooded and rapidly transmit water towards the saturated zone.

The saturation in the epikarst could change depending on previous rainfall and air temperature. The variability in response time is larger during winter, corresponding to low rainfall intensities. This could be explained by the fact that if the rainfall event is less intense, the initial conditions of the epikarst have more impact on its saturation velocity and so on the response time (Fig. 9).
At most of the boreholes, the response time tends to reach a limit at high rainfall intensities (Fig. 9). This can be interpreted as the picture of the maximal transfer velocity (Table 3), probably due to maximum saturation of the epikarst. The minimum response time varies depending on the borehole, between 8 and 38 h (Table 3). The variability observed between the boreholes is most likely due to the heterogeneity of the epikarst.

7. Conclusions

In this study, we applied the sliding window cross-correlation method to analyse the seasonal variability of water transfer processes in a karst aquifer. We showed that its impulse response, and more particularly, its response time to rainfall, has a strong seasonality and gives information on the function of the unsaturated zone, which suggests the existence of an epikarst reservoir.

The karst aquifer is characterised by seasonal variability in response time, which is shorter during the summer. We explain this by variability in the input forcing, the rainfall intensity: an increase in rainfall intensity induces a decrease in response time. This evolution can be explained by variability in the epikarst saturation depending on rainfall intensity. During the summer, when rainfall intensity is higher, the epikarstic aquifer is quickly saturated, leading to fast and concentrated flows in the conduit porosities. In addition, high saturation of the epikarst induces the flooding of large conduits located in the upper zone of the epikarst that transmit the pressure pulse more rapidly and directly.

The conceptual model proposed, highlighted by seasonal variability in response time and hydrological processes, could be supported and validated by other methods, including geochemical or geophysical techniques.
Acknowledgements

The authors thank the French Atomic Agency (CEA) for access to the experimental site. Most of the experiments were completed with the enthusiastic and thoughtful collaboration of Patricia Gilbert, Yves Saulnier and Francois Alban. We thank A.J. Long and an anonymous reviewer for their helpful comments.

Figures:

Figure 1: Description of the study area. The blue line represents the catchment limit, the grey area represents the urban area, the black line represents the faults and the black points represent the locations of the monitored boreholes.

Figure 2: Monthly averaged rainfall (histogram), monthly average air temperature (black line and dots) and monthly average rainfall intensity (gray line and dots), which is the average of rainfall intensity in mm/h without taking into account the intensities equal to zero, from meteorological data at Saint Martin du Mont (data Météo France) during the period 1992-2012.

Figure 3: Principle of the sliding cross-correlation method. (a) is the time series of rainfall and the piezometric level. Both time series are sliced with superposed windows. (b) is the cross-correlation function between rainfall and piezometric level on the first window. (c) and (d) are the cross-correlation functions for two following windows. For each cross-correlation function, the response time (RT) is determined. The time series of the response time is defined as (e).
Figure 4: Rainfall and piezometric level time series for each borehole.

Figure 5: Time series of rainfall and response time for each borehole. The response time varies through the year. The dotted line (.....) represents the absence of calculated response time due to a gap in the piezometric level data or a non-significant correlation coefficient of the cross-correlation function.

Figure 6: Monthly response time for the D1, D35, F7, A1 and C2 boreholes. The response time varies seasonally for these boreholes; the response time is lower during the summer period, from June to October.

Figure 7: Time series of response time at the F7 borehole calculated for each sliding cross-correlogram window and of the 3-month moving average of the piezometric level. The response time decreases when the thickness of the saturated zone increases.

Figure 8: Time series of intensity rainfall and response time at the F7 borehole. The rainfall and response time are anti-correlated, with a minimum response time when rainfall intensity is at a maximum.

Figure 9: Rainfall intensity versus response time for each studied borehole. For the A1, D35, F7, D1 and C2 boreholes, the response time decreases when the rainfall intensity increases, and the response time appears to tend towards a limit at high rainfall intensities.

References:

climatique : Implications en matière de vulnérabilité de la ressource. Thèse de doctorat

Tables:

Table 1: Key characteristics of monitored boreholes. The unsaturated zone was measured at the same date for each borehole during a low water level (July 2010).
Table 2: Results of the application of the sliding cross-correlogram between rainfall and the piezometric level: characteristics of response times and coefficient correlations of the time series.

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Dominant land use</th>
<th>Wellhead altitude (m NGF)</th>
<th>Unsaturated zone thickness (m)</th>
<th>Maximum response time (h)</th>
<th>Minimum response time (h)</th>
<th>Mean response time (h)</th>
<th>Maximum coefficient correlation</th>
<th>Minimum coefficient correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Industrial land use</td>
<td>496.9</td>
<td>69.4</td>
<td>42</td>
<td>5</td>
<td>15.48</td>
<td>0.513</td>
<td>0.071</td>
</tr>
<tr>
<td>C2</td>
<td>Forest</td>
<td>472.0</td>
<td>38.1</td>
<td>107</td>
<td>26</td>
<td>49.34</td>
<td>0.331</td>
<td>0.061</td>
</tr>
<tr>
<td>D1</td>
<td>Forest</td>
<td>367.6</td>
<td>5.0</td>
<td>118</td>
<td>28</td>
<td>52.38</td>
<td>0.403</td>
<td>0.046</td>
</tr>
<tr>
<td>D35</td>
<td>Forest</td>
<td>429.5</td>
<td>31.6</td>
<td>140</td>
<td>9</td>
<td>40.43</td>
<td>0.463</td>
<td>0.066</td>
</tr>
<tr>
<td>F7</td>
<td>Forest</td>
<td>469.4</td>
<td>52.5</td>
<td>107</td>
<td>20</td>
<td>38.90</td>
<td>0.398</td>
<td>0.055</td>
</tr>
<tr>
<td>S3</td>
<td>Industrial land use</td>
<td>500.4</td>
<td>33.7</td>
<td>52</td>
<td>12</td>
<td>23.58</td>
<td>0.449</td>
<td>0.068</td>
</tr>
</tbody>
</table>
Table 3: Values of the minimum response time determined from the asymptote described by the relationship between rainfall intensity and response time (fig. 9).

<table>
<thead>
<tr>
<th>Borehole</th>
<th>Minimum response time defined from the asymptote (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>8</td>
</tr>
<tr>
<td>C2</td>
<td>34</td>
</tr>
<tr>
<td>D1</td>
<td>38</td>
</tr>
<tr>
<td>D35</td>
<td>13</td>
</tr>
<tr>
<td>F7</td>
<td>21</td>
</tr>
</tbody>
</table>
Figure 9

Graphs showing rainfall intensity (mm.h\(^{-1}\)) over response time (h) for Wells F7, D35, D1, A1, S3, and C2.
Highlights:

- Sliding window cross-correlation highlights the karst response time seasonality.
- The response time varies seasonally with an uncommon rise during winter.
- The response time depends on the rainfall intensity.
- The rainfall intensity modifies the hydrological process in the epikarstic zone.