KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
SAZU, Ljubljana
Acta carsologica, 2004, Vol 33, Issue 2, p. 115-150
Forecasting Versus Predicting Solute Transport in Solution Conduits for Estimating Drinking-Water Risks
Field, Malcolm S.
Abstract:
Contaminant releases in karstic terranes can cause rapid and devastating affects on drinking-water supplies. Because future contaminant releases are likely it is necessary that local water managers develop release scenarios so as to be prepared prior to an actual contaminant release occurring. Release scenarios may be forecasted using appropriate historical data or they may be predicted using selected measured parameters. Forecasting contaminant releases to drinking-water supplies in karstic terranes is best accomplished by conducting numerous tracer tests from each potential source location to each exposure point so that acceptable solute-transport parameters for each solution conduit may be estimated from analyses of the breakthrough curves. Compositing the numerous breakthrough curves and fitting a quintic spline allows development of a single representative breakthrough curve that may then be used to forecast the effects of a release. Predicting contaminant releases is accomplished by combining basic measured field parameters for selected solution conduits in functional relationships for application in solute-transport models. The resulting breakthrough curve and solute-transport parameters can be used to predict the effects of a release. The forecasting and prediction methodologies were tested using a hypothetical release into a solution conduit developed in a karstic aquifer. Both methods were shown to produce reasonably acceptable results. The prediction methodology produced better time-of-travel results and better mass recovery and exposure concentration results than did the forecasting methodology.
Contaminant releases in karstic terranes can cause rapid and devastating affects on drinking-water supplies. Because future contaminant releases are likely it is necessary that local water managers develop release scenarios so as to be prepared prior to an actual contaminant release occurring. Release scenarios may be forecasted using appropriate historical data or they may be predicted using selected measured parameters. Forecasting contaminant releases to drinking-water supplies in karstic terranes is best accomplished by conducting numerous tracer tests from each potential source location to each exposure point so that acceptable solute-transport parameters for each solution conduit may be estimated from analyses of the breakthrough curves. Compositing the numerous breakthrough curves and fitting a quintic spline allows development of a single representative breakthrough curve that may then be used to forecast the effects of a release. Predicting contaminant releases is accomplished by combining basic measured field parameters for selected solution conduits in functional relationships for application in solute-transport models. The resulting breakthrough curve and solute-transport parameters can be used to predict the effects of a release. The forecasting and prediction methodologies were tested using a hypothetical release into a solution conduit developed in a karstic aquifer. Both methods were shown to produce reasonably acceptable results. The prediction methodology produced better time-of-travel results and better mass recovery and exposure concentration results than did the forecasting methodology.