KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
SAZU, Ljubljana
Acta carsologica, 2008, Vol 37, Issue 1, p. 15-40
Flank Margin Cave Development in Telogenetic Limestones of New Zealand
Mylroie J. E. , Mylroie J. R. , Nelson C. S.
Abstract:
Coastal limestone outcrops, typically with advanced levels of diagenetic maturity (i.e., are telogenetic carbonates), were examined on North Island (Raglan Harbour, Kawhia Harbour, Napier, and Waipu Cove) and South Island (Pohara, Paturau River, Punakaiki, Kakanui, and Kaikoura), New Zealand, to determine if flank margin caves, produced by mixing dissolution, were present. In coastal settings, caves in carbonate rock can be the outcome of pseudokarst process, primarily wave erosion, as well as karst processes not associated with fresh and sea-water mixing such as epikarst features and conduit-flow stream caves. Flank margin caves were successfully differentiated from other cave types by the following criteria: phreatic dissolutional morphologies at the wall rock and chamber scales; absence of high- velocity, turbulent-flow wall sculpture and sediment deposits; and lack of integration of adjacent caves into a continuous flow path. The active tectonics of New Zealand creates a variable sea- level situation. The relatively short time of sea-level stability limits the size of the New Zealand flank margin caves compared to tectonically-stable environments, such as the Bahamas, where glacioeustasy alone controls sea-level stability. Uplift events can be identified as slow and steady when the flank margin caves are uniformly elongated in the vertical direction, and episodic when the flank margin caves show widening and tube development at discrete horizons that cut across rock structure. New Zealand flank margin caves contain information on uplift duration and rates independent of other commonly used measures, and therefore can provide a calibration to other methods.
Coastal limestone outcrops, typically with advanced levels of diagenetic maturity (i.e., are telogenetic carbonates), were examined on North Island (Raglan Harbour, Kawhia Harbour, Napier, and Waipu Cove) and South Island (Pohara, Paturau River, Punakaiki, Kakanui, and Kaikoura), New Zealand, to determine if flank margin caves, produced by mixing dissolution, were present. In coastal settings, caves in carbonate rock can be the outcome of pseudokarst process, primarily wave erosion, as well as karst processes not associated with fresh and sea-water mixing such as epikarst features and conduit-flow stream caves. Flank margin caves were successfully differentiated from other cave types by the following criteria: phreatic dissolutional morphologies at the wall rock and chamber scales; absence of high- velocity, turbulent-flow wall sculpture and sediment deposits; and lack of integration of adjacent caves into a continuous flow path. The active tectonics of New Zealand creates a variable sea- level situation. The relatively short time of sea-level stability limits the size of the New Zealand flank margin caves compared to tectonically-stable environments, such as the Bahamas, where glacioeustasy alone controls sea-level stability. Uplift events can be identified as slow and steady when the flank margin caves are uniformly elongated in the vertical direction, and episodic when the flank margin caves show widening and tube development at discrete horizons that cut across rock structure. New Zealand flank margin caves contain information on uplift duration and rates independent of other commonly used measures, and therefore can provide a calibration to other methods.