Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That transverse wave is a wave generated by shearing displacement where wave motion is perpendicular to direction of propagation [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Chemical Geology, 2002, Issue 192, p. 1-21
Origin, evolution and residence time of saline thermal fluids (Balaruc springs, southern France): implications for fluid transfer across the continental shelf
Abstract:

Thermal fluids in the Balaruc-les-Bains peninsula, on the northeastern edge of the Thau lagoon (southern France), supply the third largest spa in France. These thermal fluids interact with karst water in the Upper Jurassic aquifer composed of limestone and dolomite, forming two massifs to the east and north of the lagoon. These calcareous formations extend under the western end of the Thau lagoon. Geochemical and isotope analyses were carried out in 1996 and 1998 on the thermal wells of the Balaruc-les-Bains peninsula to determine the origin of the thermal fluids and their interaction with subsurface karst water. The thermal fluids are a mixture of karst water and water of marine origin. 3H and NO3 concentrations show that the proportion of present-day karst water in certain thermal wells is small ( < 5%), thus enabling us to define a ‘‘pure’’ thermal end-member. The thermal end-member is itself a mixture of seawater and meteoric paleowater. Ca and Sr concentrations indicate a lengthy interaction with the carbonate substratum of the deep reservoir. Sr isotope signatures are very homogeneous and associated mainly with the dissolution of Jurassic carbonate, but also to evaporitic minerals. y13C contents indicate that this dissolution is linked to deep inflow of CO2. 87Sr, trace element and rare earth element (REE) concentrations indicate that there is also a component, with a systematically minor participation, whose origin is deeper than the Jurassic carbonate and attributed to the Triassic and/or to the crystalline basement. 36Cl concentrations are extremely low, indicating a residence time of around a hundred thousand years. The outflow temperature of the thermal fluids reaches 50 jC, and geothermometers indicate a reservoir temperature of around 80–100 jC, locating this aquifer at a depth of between 2000 and 2500 m. The geometry of the geological formations indicates a thrust plane associated with major basement faulting that separates the two calcareous massifs and seems to control the rise of deep thermal fluids from the Jurassic carbonate reservoirs and the participation of a deeper component from the basement and/or the Triassic. The present study shows that seawater can infiltrate at great depths and reside for long periods of time compared to the subsurface groundwater cycle. Compared to other highly saline fluids encountered in basement zones, these waters have a relatively well-preserved marine signature, probably due to the carbonate nature of the aquifer in which the fluids resided and their short residence time.