Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That stage record is stage discharge relations presented in tabulated form [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Geochimica et Cosmochimica Acta, 2008, Vol 72, Issue 2, p. 438-448
δ13C profiles along growth layers of stalagmites: Comparing theoretical and experimental results

The isotopic carbon ratio of a calcite-precipitating solution flowing as a water film on the surface of a stalagmite is determined by Rayleigh distillation. It can be calculated, when the -concentration of the solution at each surface point of the stalagmite and the fractionation factors are known. A stalagmite growth model based entirely on the physics of laminar flow and the well-known precipitation rates of a supersaturated solution of calcite, without any further assumptions, is employed to obtain the spatial distribution of the -concentration, which contributes more than 95% to the dissolved inorganic carbon (DIC). The δ13C profiles are calculated along the growth surface of a stalagmite for three cases: (A) isotopic equilibrium of both CO2 outgassing and calcite precipitation; (B) outgassing of CO2 is irreversible but calcite precipitation is in isotopic equilibrium. (C) Both CO2 outgassing and calcite precipitation are irreversible. In all cases the isotopic shift δ13C increases from the apex along the distance on a growth surface. In cases A and B, calcite deposited at the apex is in isotopic equilibrium with the solution of the drip water. The difference between δ13C at the apex and the end of the growth layer is independent of the stalagmite’s radius, but depends on temperature. For case A, it is about half the value obtained for cases B and C. In case C, the isotopic composition of calcite at the apex equals that of the drip water, but further out it becomes practically identical with that of case B. The growth model has been applied to field data of stalagmite growth, where the thickness and the δ13C of calcite precipitated to a glass plate located on the top of a stalagmite have been measured as function of the distance from the drip point. The calculated data are in good agreement to the observed ones and indicate that deposition occurred most likely under conditions B, eventually also C. A sensitivity analysis has been performed, which shows that within the limits of observed external parameters, such as drip rates and partial pressure of carbon dioxide PCO2 in the cave, the results remain valid.