KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Marine Geology, 2005, Vol 216, Issue 4, p. 205-219
Fields of multi-kilometer scale sub-circular depressions in the Carnegie Ridge sedimentary blanket: Effect of underwater carbonate dissolution?
Michaud F. , Chabert A. , Collot J. Y. , Sallares V. , Flueh E. R. , Charvis P. , Graindorge D. , Gustcher M. A. , Bialas J.
Abstract:
Offshore Ecuador, the Carnegie Ridge is a volcanic ridge with a carbonate sediment drape. During the SALIERI Cruise, multibeam bathymetry was collected across Carnegie Ridge with the Simrad EM120 of the R/V SONNE. The most conspicuous features discovered on the Carnegie Ridge are fields of circular closed depressions widely distributed along the mid-slope of the northern and southern flanks of the ridge between 1500 and 2600 m water depth. These circular depressions are 1–4 km wide and typically 100–400 m deep. Most are flat floored and some are so densely packed that they form a honeycomb pattern. The depressions were carved into the ridge sedimentary blanket, which consists of carbonate sediment and has been dated from upper Miocene to upper Pleistocene. Several hypotheses including pockmark origin, sediment creeping, paleo-topography of the volcanic basement, effects of subbottom currents, and both marine and subaerial karstic origins are discussed. We believe that underwater dissolution process merits the most serious consideration regarding the origin of the closed depression.
Offshore Ecuador, the Carnegie Ridge is a volcanic ridge with a carbonate sediment drape. During the SALIERI Cruise, multibeam bathymetry was collected across Carnegie Ridge with the Simrad EM120 of the R/V SONNE. The most conspicuous features discovered on the Carnegie Ridge are fields of circular closed depressions widely distributed along the mid-slope of the northern and southern flanks of the ridge between 1500 and 2600 m water depth. These circular depressions are 1–4 km wide and typically 100–400 m deep. Most are flat floored and some are so densely packed that they form a honeycomb pattern. The depressions were carved into the ridge sedimentary blanket, which consists of carbonate sediment and has been dated from upper Miocene to upper Pleistocene. Several hypotheses including pockmark origin, sediment creeping, paleo-topography of the volcanic basement, effects of subbottom currents, and both marine and subaerial karstic origins are discussed. We believe that underwater dissolution process merits the most serious consideration regarding the origin of the closed depression.