Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That peloid is a microscopic texture. a sedimentary grain composed of micrite carbonate irrespective of origin [20]. synonyms: (french.) peloide; (german.) mikroskopisches, sedimentares gefuge; (greek.) piloidis; (italian.) peloide; (spanish.) peloide; (turkish.) peloit. see micrite, pelsparite.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Sedimentary Geology/Sedimentary Geology , 2000, Vol 131, Issue 3, p. 201-219
Geochemical study of calcite veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic): evidence for widespread post-Variscan fluid flow in the central part of the Bohemian Massif
Abstract:
Carbonate fracture cements in limestones have been investigated by fluid inclusion and stable isotope analysis to provide insight into fluid evolution and deformation conditions of the Barrandian Basin (Silurian–Devonian) of the Czech Republic. The fractures strike generally north–south and appear to postdate major Variscan deformation. The most common fracture cement is calcite that is locally accompanied by quartz, natural bitumen, dolomite, Mn-oxides and fluorite. Three successive generations of fracture-filling calcite cements are distinguished based on their petrographical and geochemical characteristics. The oldest calcite cements (Stage 1) are moderate to dull brown cathodoluminescent, Fe-rich and exhibit intense cleavage, subgrain development and other features characteristic of tectonic deformation. Less tectonically deformed, variable luminescent Fe-poor calcite corresponds to a paragenetically younger Stage 2 cement. First melting temperatures, Te, of two-phase aqueous inclusions in Stages 1 and 2 calcites are often around 2208C, suggesting that precipitation of the cements occurred from H2O–NaCl fluids. The melting temperature, Tm, has values between 0 and 25.88C, corresponding to a low salinity between 0 and 8.9 eq. wt% NaCl. Homogenization temperatures, Th, from calcite cements are interpreted to indicate precipitation at about 708C or less. No distinction could be made between the calcite of Stages 1 and 2 based on their fluid inclusion characteristics. In some Stage 2 cements, inclusions of highly saline (up to 23 eq. wt% NaCl) brines appear to coexist with low-salinity inclusions. The low salinity fluid possibly contains Na-, K-, Mg- and Ca-chlorides. The high salinity fluid has a H2O–NaCl–CaCl2 composition. Blue-to-yellow-green fluorescing hydrocarbon inclusions composed of medium to higher API gravity oils are also identified in some Stages 1 and 2 calcite cements. Stage 1 and 2 calcites have d 18O values between 213.2‰ and 27.2‰ PDB. The lower range of the calculated d 18O values of the ambient fluids (23.5‰ to 1 2.7‰ SMOW) indicate precipitation of these cements from deeply circulating meteoric waters. The presence of petroleum hydrocarbon inclusions in some samples is interpreted to reflect partial mixing with deeper basinal fluids. The paragenetically youngest Stage 3 calcite cement has only been encountered in a fewveins.These calcites are characterised by an intensely zoned luminescence pattern, with bright yellow and non-luminescent zones. Inclusions of Mn-oxides and siliceous sinters are commonly associated with Stage 3 calcite, which is interpreted to have precipitated from shallower meteoric waters. Regional structural analysis revealed that the calcite veins of the Barrandian basin belong to a large-scale system of north–south-trending lineaments that run through the territory of the Czech Republic. The veins probably reflect episodes of fluid migration that occurred along these lineaments during late stages of the Variscan orogeny