Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That hod is see aisle.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

NSS
Journal of Cave and Karst Studies, 1999, Vol 61, Issue 2, p. 59-67
Hydrogeology of Kartchner Caverns State Park, Arizona
Abstract:
Three distinct hydrogeologic systems occur within Kartchner Caverns State Park, Arizona, each in fault contact with the other two. The southeastern corner and eastern edge of the park is part of the large graben that formed the San Pedro Valley during Miocene Basin and Range faulting. A thick alluvial sequence fills this graben and contains a regional aquifer covering 1000 km. One well in the park penetrates this aquifer. The groundwater level measured in this well was 226 m below land surface (1167 m msl), which is 233 m lower than the lowest measured point inside of Kartchner Caverns (1400 m msl). A pediment occupies a small part of the southwestern corner of the park. Structurally, this feature is part of the Whetstone Mountains horst rising above the park to the west. The pediment consists of a bedrock surface of Precambrian Pinal Schist overlain by a few tens of meters of granite wash sediments. Groundwater occurs at depths of 4-18 m below land surface in wells tapping the granite wash sediments. Data from these wells indicate that the zones of saturation within the granite wash sediments are probably of limited lateral extent and yield little water to wells. At the boundary between the pediment and the carbonate ridge containing Kartchner Caverns, the water table in the granite wash aquifer is 20 m higher than the bottom of the nearest known cave passage, located about 200 m to the east.The arid carbonate hills occupying the northwestern part of the park are the erosional remnants of a fault block (the Kartchner Block) that was displaced downward with respect to the Whetstone Mountains horst to the west. Kartchner Caverns is wholly contained in a ridge of highly faulted Mississippian Escabrosa Limestone and cuts conspicuously across Escabrosa beds dipping 10-40 to the southwest and west. Meteoric water enters the Kartchner Block and Kartchner Caverns from infiltration of runoff in washes that border the block and from overhead infiltration of precipitation. A small amount of groundwater also may flow into the Kartchner Block from the schist pediment to the south. Response in the cave to these fluxes is slow. As calculated from past records, the probability of flooding in the cave in any one year is about 57%.