KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
NSS
Journal of Cave and Karst Studies, 1999, Vol 61, Issue 2, p. 73-78
Mineralogy of Kartchner Caverns, Arizona
Hill, C. A.
Abstract:
The mineralogy of Kartchner Caverns is both diverse and significant. Six different chemical classes are represented in this one cave: carbonates, nitrates, oxides, phosphates, silicates, and sulfates. It is significant primarily because: (1) the silicate minerals, nontronite and rectorite, have never before been reported from a cave occurrence; (2) the nitrate mineral, nitrocalcite, has never been described using modern techniques; (3) ‘birdsnest’ needle quartz has been reported only from one other, non-cave, locality; and (4) extensive brushite moonmilk flowstone has not been reported from anywhere else in the world. Kartchner is a beautiful cave because its carbonate speleothems are colorful (shades of red, orange, yellow and tan) and ‘alive’ (still wet and growing).
The mineralogy of Kartchner Caverns is both diverse and significant. Six different chemical classes are represented in this one cave: carbonates, nitrates, oxides, phosphates, silicates, and sulfates. It is significant primarily because: (1) the silicate minerals, nontronite and rectorite, have never before been reported from a cave occurrence; (2) the nitrate mineral, nitrocalcite, has never been described using modern techniques; (3) ‘birdsnest’ needle quartz has been reported only from one other, non-cave, locality; and (4) extensive brushite moonmilk flowstone has not been reported from anywhere else in the world. Kartchner is a beautiful cave because its carbonate speleothems are colorful (shades of red, orange, yellow and tan) and ‘alive’ (still wet and growing).