KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
NSS
Journal of Cave and Karst Studies, 2006, Vol 68, Issue 2, p. 74-81
Age constraints on cave development and landscape evolution in the Bighorn Basin of Wyoming, USA.
Stock, G. M. , Riihimaki C. A. , Anderson R. S.
Abstract:
Cosmogenic 26Al/10Be burial dating and tephrochronology of cave deposits provide minimum estimates for the timing of cave development in the Bighorn Basin of Wyoming. Spence Cave is a linear phreatic passage formed along the fold axis of the Sheep Mountain anticline and subsequently truncated by 119 m of Bighorn River incision. A fine-grained eolian (windblown) sand deposit just inside the entrance yields a 26Al/10Be burial age of 0.31 ± 0.19 million years (Ma). This represents a minimum age for the development of Spence Cave, and provides a maximum incision rate for the Bighorn River of 0.38 ± 0.19 mm/yr. Horsethief Cave is a complex phreatic cave system located 43 km north of Spence Cave on a plateau surface ~340 m above the Bighorn River. Electron microprobe analyses of white, fine-grained sediment in the Powder Mountain section of Horsethief Cave confirm that this deposit is Lava Creek B fallout ash, erupted from the Yellowstone Plateau volcanic field ca. 0.64 Ma. Assuming this as a minimum age for the development of Horsethief Cave, extrapolation of the cave profile gradient westward to the Bighorn River gorge suggests a maximum incision rate of 0.35 ± 0.19 mm/yr. Incision rates from both caves match well, and are broadly similar to other estimates of regional incision, suggesting that they record lowering of the Bighorn Basin during the late Pleistocene. However, we caution that deposition of both the Spence Cave sand and the Horsethief Cave volcanic ash may postdate the actual timing of cave development. Thus, these ages place upper limits on landscape evolution rates in the Bighorn Basin
Cosmogenic 26Al/10Be burial dating and tephrochronology of cave deposits provide minimum estimates for the timing of cave development in the Bighorn Basin of Wyoming. Spence Cave is a linear phreatic passage formed along the fold axis of the Sheep Mountain anticline and subsequently truncated by 119 m of Bighorn River incision. A fine-grained eolian (windblown) sand deposit just inside the entrance yields a 26Al/10Be burial age of 0.31 ± 0.19 million years (Ma). This represents a minimum age for the development of Spence Cave, and provides a maximum incision rate for the Bighorn River of 0.38 ± 0.19 mm/yr. Horsethief Cave is a complex phreatic cave system located 43 km north of Spence Cave on a plateau surface ~340 m above the Bighorn River. Electron microprobe analyses of white, fine-grained sediment in the Powder Mountain section of Horsethief Cave confirm that this deposit is Lava Creek B fallout ash, erupted from the Yellowstone Plateau volcanic field ca. 0.64 Ma. Assuming this as a minimum age for the development of Horsethief Cave, extrapolation of the cave profile gradient westward to the Bighorn River gorge suggests a maximum incision rate of 0.35 ± 0.19 mm/yr. Incision rates from both caves match well, and are broadly similar to other estimates of regional incision, suggesting that they record lowering of the Bighorn Basin during the late Pleistocene. However, we caution that deposition of both the Spence Cave sand and the Horsethief Cave volcanic ash may postdate the actual timing of cave development. Thus, these ages place upper limits on landscape evolution rates in the Bighorn Basin