Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That drainage well is 1. a well installed to drain surface water, storm water, or treated waste water into underground strata [22]. 2. a water well constructed to remove subsurface water or to reduce a hydrogeologic unit's potentiometric surface [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

International Journal of Speleology, 2006, Vol 35, Issue 2, p. 67-73
Vashegyite from Gaura cu Musc? Cave.
This study investigated the occurrence of vashegyite from a guano-rich deposit located in the Gaura cu Musc? Cave, Romania. Analytical methods used include optical microscopy, X-ray powder diffraction (XRD), scanning electron-microscopy (SEM), inductively coupled plasma-atomic emission spectrometry (ICP-AES), thermal investigations and Fourier-transform infrared (FT-IR) analyses. Vashegyite occurs as friable, chalky white, irregular nodules of up to 2.5 cm in diameter, within a 15 cm thick sequence of organic and minerogenic sediments. The chemical structural formula is: (Al10.91Fe3+ 0.06Na0.1Ca0.02Mg0.08)?=11.17[(PO4)8.78(SiO4)0.056]?=8.83(OH)6.1743.79H2O. Electron microscope images show vashegyite crystals to be flattened on (001). The orthorhombic lattice constants of vashegyite determined by XRD are a = 10.766(2) , b = 15.00(4) , c = 22.661(1) , and V = 3660.62 3 (Z = 4). The major weight loss, reflected in 3 endothermic peaks, was observed between 40 and 200C, corresponding to the removal of water molecules. Vashegyite FT-IR absorption bands are comparable in position and relative intensity to other Al-phosphates. Water percolating through guano becomes strongly acidic and reacts with the clay-rich sediment laid down by the underground stream to form vashegyite. In the lower part of the investigated profile, crandallite and ardealite were also found.