KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Earth and Planetary Science Letters, 1982, Vol 58, Issue 2, p. 293-299
A possible mechanism for growth of calcite speleothems without participation of biogenic carbon dioxide
Dreybrodt W,
Abstract:
Using Plummer et al.'s [11] rate equations on the dissolution and deposition of CaCO3 in H2O---CO2 systems, we have calculated deposition rates of CaCO3 to stalagmites in caves which are covered by glaciers or bare karst. In this case no biogenic CO2 from vegetated soil is available and the deposition of CaCO3 involves only atmospheric CO2. The mechanism of deposition proceeds by a temperature effect. Cold melting waters of about 0[deg]C dissolve CaCO3 under open system conditions at the surface of the rock. When this solution saturated with respect to CaCO3, flows through the limestone rock its temperature increases by several degrees. Therefore, it becomes supersaturated, and CaCO3 is deposited under open system conditions in the warmer cave. Maximal growth rates of about 10-3 cm/year are possible. From the kinetics of the deposition of CaCO3 from the thin water films present at the surface of stalagmites we are able to estimate the isotopic composition of carbon in the CaCO3 deposited on the stalagmites to be approximately [delta]13C = %, which is close to some observed values.From our data we conclude that substantial growth of stalagmites is possible during glacial periods as well as in areas of bare karst, a question which was not resolved up to now
Using Plummer et al.'s [11] rate equations on the dissolution and deposition of CaCO3 in H2O---CO2 systems, we have calculated deposition rates of CaCO3 to stalagmites in caves which are covered by glaciers or bare karst. In this case no biogenic CO2 from vegetated soil is available and the deposition of CaCO3 involves only atmospheric CO2. The mechanism of deposition proceeds by a temperature effect. Cold melting waters of about 0[deg]C dissolve CaCO3 under open system conditions at the surface of the rock. When this solution saturated with respect to CaCO3, flows through the limestone rock its temperature increases by several degrees. Therefore, it becomes supersaturated, and CaCO3 is deposited under open system conditions in the warmer cave. Maximal growth rates of about 10-3 cm/year are possible. From the kinetics of the deposition of CaCO3 from the thin water films present at the surface of stalagmites we are able to estimate the isotopic composition of carbon in the CaCO3 deposited on the stalagmites to be approximately [delta]13C = %, which is close to some observed values.From our data we conclude that substantial growth of stalagmites is possible during glacial periods as well as in areas of bare karst, a question which was not resolved up to now
Keywords: area, areas, atmospheric co2, calcite, carbon, carbon dioxide, carbon-dioxide, cave, caves, co2, cold, deposition, dioxide, dissolution, equation, equations, flow, flows, glacier, glaciers, growth, growth rate, growth-rate, growth-rates, isotopic composition, its, karst, kinetics, limestone, mechanism, melting, rates, rock, soil, solution, speleothem, speleothems, stalagmite, stalagmites, surface, system, systems, temperature, water, waters,