KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Earth and Planetary Science Letters, 1994, Vol 126, Issue 0, p. 91-108
The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal
Bassinot Fc, Labeyrie Ld, Vincent E, Quidelleur X, Shackleton Nj, Lancelot Y,
Abstract:
Below oxygen isotope stage 16, the orbitally derived time-scale developed by Shackleton et al. [1] from ODP site 677 in the equatorial Pacific differs significantly from previous ones [e.g., 2-5], yielding estimated ages for the last Earth magnetic reversals that are 5-7% older than the K/Ar values [6-8] but are in good agreement with recent Ar/Ar dating [9-11]. These results suggest that in the lower Brunhes and upper Matuyama chronozones most deep-sea climatic records retrieved so far apparently missed or misinterpreted several oscillations predicted by the astronomical theory of climate. To test this hypothesis, we studied a high-resolution oxygen isotope record from giant piston core MD900963 (Maldives area, tropical Indian Ocean) in which precession-related oscillations in [delta]18O are particularly well expressed, owing to the superimposition of a local salinity signal on the global ice volume signal [12]. Three additional precession-related cycles are observed in oxygen isotope stages 17 and 18 of core MD900963, compared to the composite curves [4,13], and stage 21 clearly presents three precession oscillations, as predicted by Shackleton et al. [1]. The precession peaks found in the [delta]18O record from core MD900963 are in excellent agreement with climatic oscillations predicted by the astronomical theory of climate. Our [delta]18O record therefore permits the development of an accurate astronomical time-scale. Based on our age model, the Brunhes-Matuyama reversal is dated at 775 10 ka, in good agreement with the age estimate of 780 ka obtained by Shackleton et al. [1] and recent radiochronological Ar/Ar datings on lavas [9-11]. We developed a new low-latitude, Upper Pleistocene [delta]18O reference record by stacking and tuning the [delta]18O records from core MD900963 and site 677 to orbital forcing functions
Below oxygen isotope stage 16, the orbitally derived time-scale developed by Shackleton et al. [1] from ODP site 677 in the equatorial Pacific differs significantly from previous ones [e.g., 2-5], yielding estimated ages for the last Earth magnetic reversals that are 5-7% older than the K/Ar values [6-8] but are in good agreement with recent Ar/Ar dating [9-11]. These results suggest that in the lower Brunhes and upper Matuyama chronozones most deep-sea climatic records retrieved so far apparently missed or misinterpreted several oscillations predicted by the astronomical theory of climate. To test this hypothesis, we studied a high-resolution oxygen isotope record from giant piston core MD900963 (Maldives area, tropical Indian Ocean) in which precession-related oscillations in [delta]18O are particularly well expressed, owing to the superimposition of a local salinity signal on the global ice volume signal [12]. Three additional precession-related cycles are observed in oxygen isotope stages 17 and 18 of core MD900963, compared to the composite curves [4,13], and stage 21 clearly presents three precession oscillations, as predicted by Shackleton et al. [1]. The precession peaks found in the [delta]18O record from core MD900963 are in excellent agreement with climatic oscillations predicted by the astronomical theory of climate. Our [delta]18O record therefore permits the development of an accurate astronomical time-scale. Based on our age model, the Brunhes-Matuyama reversal is dated at 775 10 ka, in good agreement with the age estimate of 780 ka obtained by Shackleton et al. [1] and recent radiochronological Ar/Ar datings on lavas [9-11]. We developed a new low-latitude, Upper Pleistocene [delta]18O reference record by stacking and tuning the [delta]18O records from core MD900963 and site 677 to orbital forcing functions
Keywords: age, ages, al, area, climate, curves, cycles, dating, function, high-resolution, ice, ice-volume, indian-ocean, isotope, lava, maldives, model, ocean, oxygen, oxygen-isotope, pacific, pleistocene, recent, record, records, salinity, signal, site, stacking, time scale, upper pleistocene, values, volume,