KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Earth and Planetary Science Letters, 2004, Vol 227, Issue 0, p. 215-229
Palaeoclimatic implications of the growth history and stable isotope ([delta]18O and [delta]13C) geochemistry of a Middle to Late Pleistocene stalagmite from central-western Italy
Drysdale Rn, Zanchetta G, Hellstrom Jc, Fallick Ae, Zhao Jx, Isola I, Bruschi G,
Abstract:
The age structure and stable isotope composition of a stalagmite (CC1) from an upland cave in central-western Italy were studied to investigate regional response to global climatic changes. Four growth phases are constrained by 28 thermal ionization and multi-collector inductively coupled plasma mass spectrometry Th-U ages and reveal intermittent deposition through the period between Marine Isotope Stage (MIS) 11 and 3 (~380 and ~43 kyr). Most of the growth took place between ~380 and ~280 kyr, a period punctuated briefly by a hiatus in deposition through the glacial maximum of MIS 10. Growth was terminated abruptly at 280 kyr just prior to the MIS 8 glacial maximum. With a present-day chamber temperature of 7.5 [deg]C, the timing of hiatuses close to these glacial maxima point to freezing conditions at the time. No deposition was recorded through the entirety of MIS 7 and most of MIS 6, whilst two minor growth phases occurred at ~141-125 and ~43 kyr. Growth at 141 kyr indicates temperatures >0 [deg]C at a time when MIS 6 ice volumes were close to their maximum. High stable carbon isotope ([delta]13C) values (-2.8[per mille sign] to .1[per mille sign]) throughout the stalagmite's growth reflect a persistently low input of biogenic CO2, indicating that the steep, barren and alpine-like recharge area of today has been in existence for at least the last ~380 kyr. During MIS 9, the lowest [delta]13C values occur well after maximum interglacial conditions, suggesting a lag in the development of post-glacial soils in this high-altitude karst. The stable oxygen isotope ([delta]18O) trends match the main structural features of the major climate proxy records (SPECMAP, Vostok and Devils Hole), suggesting that the [delta]18O of CC1 has responded to global-scale climate changes, whilst remarkable similarity exists between CC1 [delta]18O and regional sea-surface temperature reconstructions from North Atlantic core ODP980 and southwest Pacific marine core MD97-2120 through the most detailed part of the CC1 record, MIS 9-8. The results suggest that CC1 and other stalagmites from the cave have the potential to capture a long record of regional temperature trends, particularly in regards to the relative severity of Pleistocene glacial stages
The age structure and stable isotope composition of a stalagmite (CC1) from an upland cave in central-western Italy were studied to investigate regional response to global climatic changes. Four growth phases are constrained by 28 thermal ionization and multi-collector inductively coupled plasma mass spectrometry Th-U ages and reveal intermittent deposition through the period between Marine Isotope Stage (MIS) 11 and 3 (~380 and ~43 kyr). Most of the growth took place between ~380 and ~280 kyr, a period punctuated briefly by a hiatus in deposition through the glacial maximum of MIS 10. Growth was terminated abruptly at 280 kyr just prior to the MIS 8 glacial maximum. With a present-day chamber temperature of 7.5 [deg]C, the timing of hiatuses close to these glacial maxima point to freezing conditions at the time. No deposition was recorded through the entirety of MIS 7 and most of MIS 6, whilst two minor growth phases occurred at ~141-125 and ~43 kyr. Growth at 141 kyr indicates temperatures >0 [deg]C at a time when MIS 6 ice volumes were close to their maximum. High stable carbon isotope ([delta]13C) values (-2.8[per mille sign] to .1[per mille sign]) throughout the stalagmite's growth reflect a persistently low input of biogenic CO2, indicating that the steep, barren and alpine-like recharge area of today has been in existence for at least the last ~380 kyr. During MIS 9, the lowest [delta]13C values occur well after maximum interglacial conditions, suggesting a lag in the development of post-glacial soils in this high-altitude karst. The stable oxygen isotope ([delta]18O) trends match the main structural features of the major climate proxy records (SPECMAP, Vostok and Devils Hole), suggesting that the [delta]18O of CC1 has responded to global-scale climate changes, whilst remarkable similarity exists between CC1 [delta]18O and regional sea-surface temperature reconstructions from North Atlantic core ODP980 and southwest Pacific marine core MD97-2120 through the most detailed part of the CC1 record, MIS 9-8. The results suggest that CC1 and other stalagmites from the cave have the potential to capture a long record of regional temperature trends, particularly in regards to the relative severity of Pleistocene glacial stages
Keywords: age, ages, alpi apuane (italy), area, atlantic, capture, carbon, carbon and oxygen isotopes, carbon isotope, cave, chamber, climate, climate change, climate-change, climatic change, climatic changes, climatic-change, co2, deposition, existence, features, geochemistry, growth, history, ice, ice-volume, input, isotope, italy, karst, late pleistocene, marine, mass, mass-spectrometry, middle, north, north atlantic, oxygen, oxygen-isotope, pacific, palaeoclimate, part, phase, pleistocene, proxy record, quaternary, recharge, recharge area, reconstruction, reconstructions, record, records, soil, soils, speleothems, stable carbon, stable isotope, stable-isotope, stalagmite, stalagmites, structural features, structure, temperature, temperatures, time, trends, u-series dating, upland, values, volume,