KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
P O BOX 18, 6710 BA EDE, NETHERLANDS
Geologie En Mijnbouw-Netherlands Journal of Geosciences, 2001, Vol 80, Issue 0, p. 315-321
Modelling of speleothems failure in the Hotton cave (Belgium). Is the failure earthquake induced?
Cadorin Jf, Jongmans D, Plumier A, Camelbeeck T, Delaby S, Quinif Y,
Abstract:
To provide quantitative information on the ground acceleration necessary to break speleothems, laboratory measurements on samples of stalagmite have been performed to study their failure in bending. Due to their high natural frequencies, speleothems can be considered as rigid bodies to seismic strong ground motion. Using this simple hypothesis and the determined mechanical properties (a minimum value of 0.4 MPa for the tensile failure stress has been considered), modelling indicates that horizontal acceleration ranging from 0.3 m/s(2) to 100 m/s(2) (0.03 to 10g) are necessary to break 35 broken speleothems of the Hotton cave for which the geometrical parameters have been determined. Thus, at the present time, a strong discrepancy exists between the peak accelerations observed during earthquakes and most of the calculated values necessary to break speleothems. One of the future research efforts will be to understand the reasons of the defined behaviour. It appears fundamental to perform measurements on in situ speleothems
To provide quantitative information on the ground acceleration necessary to break speleothems, laboratory measurements on samples of stalagmite have been performed to study their failure in bending. Due to their high natural frequencies, speleothems can be considered as rigid bodies to seismic strong ground motion. Using this simple hypothesis and the determined mechanical properties (a minimum value of 0.4 MPa for the tensile failure stress has been considered), modelling indicates that horizontal acceleration ranging from 0.3 m/s(2) to 100 m/s(2) (0.03 to 10g) are necessary to break 35 broken speleothems of the Hotton cave for which the geometrical parameters have been determined. Thus, at the present time, a strong discrepancy exists between the peak accelerations observed during earthquakes and most of the calculated values necessary to break speleothems. One of the future research efforts will be to understand the reasons of the defined behaviour. It appears fundamental to perform measurements on in situ speleothems
Keywords: belgium, cave, damages, earthquake, earthquakes, frequency, future, in-situ, information, karst sediments, laboratories, mechanical properties, mechanical-properties, modelling, parameters, sample, speleothem, speleothems, stalagmite, stress, time, times, values,