KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
Journal of Hydrology, 2002, Vol 264, Issue 4, p. 1-11
Development of collapse sinkholes in areas of groundwater discharge
Salvati R. , Sasowsky I. D. ,
Abstract:
Collapse sinkholes are found in groundwater recharge zones throughout the world. They cause substantial loss of property each year, and occasional fatalities. In such settings, the formation of these features occurs through the downward migration of regolith into karst voids. The presence of a void in the bedrock. and sufficient seepage pressure or gravitative force in the regolith, is required for their creation. We investigated the development of cover collapse sinkholes in an unusual setting, areas of groundwater discharge rather than recharge. Upward hydraulic gradients and the likelihood of groundwater saturated with respect to calcite are difficult to reconcile with standard models for collapse development. Short flowpaths or renewed groundwater aggressivity towards calcite (via mischungskorrosion, thermally driven circulation, or deep-seated gaseous sources) are hypothetical mechanisms that could generate the subsurface voids that are needed to allow cover collapse development in discharge areas. For the two field sites in central Italy that we investigated, calculated carbon dioxide partial pressures in springs ranged from 7.38 X 10(-2) to 7.29 X 10(-1) atm. This indicates that deep-seated gaseous sources are most likely the mechanism allowing the development of the sinkholes. Groundwater is recharged in surrounding limestone massifs. The water moves through the carbonates and becomes saturated with calcite. As it circulates deeply in to the adjacent valleys, it mixes with deep-seated waters and gaseous fluxes from major fault systems, acquiring renewed aggressivity towards calcite. Finally, the water ascends into confined aquifers in the valley fill, and dissolves carbonate material present within, leading to surface collapse. (C) 2002 Elsevier Science B.V. All rights reserved
Collapse sinkholes are found in groundwater recharge zones throughout the world. They cause substantial loss of property each year, and occasional fatalities. In such settings, the formation of these features occurs through the downward migration of regolith into karst voids. The presence of a void in the bedrock. and sufficient seepage pressure or gravitative force in the regolith, is required for their creation. We investigated the development of cover collapse sinkholes in an unusual setting, areas of groundwater discharge rather than recharge. Upward hydraulic gradients and the likelihood of groundwater saturated with respect to calcite are difficult to reconcile with standard models for collapse development. Short flowpaths or renewed groundwater aggressivity towards calcite (via mischungskorrosion, thermally driven circulation, or deep-seated gaseous sources) are hypothetical mechanisms that could generate the subsurface voids that are needed to allow cover collapse development in discharge areas. For the two field sites in central Italy that we investigated, calculated carbon dioxide partial pressures in springs ranged from 7.38 X 10(-2) to 7.29 X 10(-1) atm. This indicates that deep-seated gaseous sources are most likely the mechanism allowing the development of the sinkholes. Groundwater is recharged in surrounding limestone massifs. The water moves through the carbonates and becomes saturated with calcite. As it circulates deeply in to the adjacent valleys, it mixes with deep-seated waters and gaseous fluxes from major fault systems, acquiring renewed aggressivity towards calcite. Finally, the water ascends into confined aquifers in the valley fill, and dissolves carbonate material present within, leading to surface collapse. (C) 2002 Elsevier Science B.V. All rights reserved
Keywords: aquifer, aquifers, area, areas, atm, bedrock, c, calcite, carbon, carbon dioxide, carbon-dioxide, carbonate, carbonates, central italy, central-appenine belt, circulation, collapse, collapse sinkhole, cover-collapse, dioxide, discharge, discharge zone, fault, features, field, flux, fluxes, gradient, gradients, groundwater, groundwater discharge, groundwater recharge, hydraulic gradient, italy, karst, karst voids, likelihood, limestone, limestone massifs, massif, mechanism, mechanisms, migration, model, models, partial-pressure, pressure, recharge, record, records, science, seepage, sinkhole, sinkholes, site, sites, source, spring, springs, subsurface, surface, system, systems, time, times, usa, valley, valley fill, water, waters, world, zone, zones,