KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Journal of Hydrology, 2004, Vol 289, Issue 1, p. 178-189
A pipe-based, first approach to modeling closed conduit flow in caves
Springer Gregory S. ,
Abstract:
A closed conduit model is constructed for a discrete cave segment using the energy equation and the assumption that energy losses in the segment are generated by large-scale flow separation associated with expansions and bends. As employed, the model uses paleostage indicators and passage geometry to estimate total head loss across the study reach. Channel roughness is estimated using pipe-based equations and a skin friction factor estimated from secondary means. Discharge is varied in the model until calculated head loss matches observed head loss. The model is employed to estimate discharge for a flood recorded in Buckeye Creek Cave, West Virginia as high water marks consisting of silt lines. Under varying assumptions, the model yields paleodischarges in the range of 22-29 m3 s-1. Shear stress values calculated using model output are in general agreement with the size distribution of gravel on the stream bed and shear stress values are relatively insensitive to changes in discharge. The apparent friction factor for the study reach is estimated to be in the range of 0.4-0.7, which is in general agreement with previous studies of large conduits. The model is applicable to similar cave reaches, but requires further testing and validation because so little is known about conduit flow in karst
A closed conduit model is constructed for a discrete cave segment using the energy equation and the assumption that energy losses in the segment are generated by large-scale flow separation associated with expansions and bends. As employed, the model uses paleostage indicators and passage geometry to estimate total head loss across the study reach. Channel roughness is estimated using pipe-based equations and a skin friction factor estimated from secondary means. Discharge is varied in the model until calculated head loss matches observed head loss. The model is employed to estimate discharge for a flood recorded in Buckeye Creek Cave, West Virginia as high water marks consisting of silt lines. Under varying assumptions, the model yields paleodischarges in the range of 22-29 m3 s-1. Shear stress values calculated using model output are in general agreement with the size distribution of gravel on the stream bed and shear stress values are relatively insensitive to changes in discharge. The apparent friction factor for the study reach is estimated to be in the range of 0.4-0.7, which is in general agreement with previous studies of large conduits. The model is applicable to similar cave reaches, but requires further testing and validation because so little is known about conduit flow in karst
Keywords: author keywords: karst hydrology, cave, caves, channel, conduit, conduit flow, conduits, discharge, distribution, energy, equation, equations, expansion, flood, flow, geometry, indicator, indicators, karst, model, modeling, range, reaches, separation, shear, shear stress, size, size distribution, stream, stress, subsurface flow, uses, validation, values, virginia, water, west virginia, west-virginia, yield,