KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
The Holocene, 1999, Vol 9, Issue 5, p. 649-657
Palaeoclimatic interpretation of stable isotope data from Holocene speleothems of the Waitomo district, North Island, New Zealand
Williams P. W. , Marshall A. , Ford D. C. , Jenkinson A. V. ,
Abstract:
One straw stalactite and three stalagmites from the Waitomo district of North Island, New Zealand, were examined for stable isotopes of oxygen and carbon with a view to interpreting their palaeoclimate signal. Dating was by uranium series and AMS 14C for the stalagmites and by gamma-ray spectrometry for the straw. Records were thus established for about 100 years for the straw and 3.9, 10.1 and 10.2 ka for the stalagmites. The range of variability in d18Oc and d13Cc this century is about two-thirds of that experienced over the entire Holocene, and is most simply explained in terms of the oceanic source area of rain. Stable isotope variations in three stalagmites show some general similarities, but have significant differences in detail, which underlines the necessity to base palaeoclimatic interpretations on more than one speleothem record. The d18Oc of each stalagmite varies positively with temperature, indicating the dominance of the ocean source of evaporation in determining the isotopic composition of precipitation and hence speleothem calcite in the Holocene. This conclusion is contrary to that of other authors working in New Zealand, who identified a negative relationship between d18Oc and temperature, while examining time periods extending across the Last Glacial Maximum. It is concluded here that, whereas the ice volume effect dominates the large climatic shifts of glacial-interglacial amplitude, the oceanic source effect becomes more important during the period of relatively stable sea level during the Holocene. Results also indicate a late-Holocene altitudinal effect of 0.2{per thousand} d18Oc per 100 m and an associated temperature relationship of about 0.26{per thousand} per{degrees}C. The average of two records identifies the postglacial climatic optimum to lie in the interval from prior to 10 ka BP to 7.5 ka BP, when d18Oc values were up to 0.6{per thousand} less negative than present, implying an average annual mean temperature that was up to 2.3{degrees}C warmer. The average of three speleothem records for the last 3900 years reveals the coldest period of the Holocene to have occurred about 3 to 2 ka BP, when d18Oc values were typically 0.4{per thousand} more negative than present and average temperatures may have been 1.5{degrees}C cooler. Mean annual temperature variability of about 2{degrees}C was sometimes experienced in little more than 100 years
One straw stalactite and three stalagmites from the Waitomo district of North Island, New Zealand, were examined for stable isotopes of oxygen and carbon with a view to interpreting their palaeoclimate signal. Dating was by uranium series and AMS 14C for the stalagmites and by gamma-ray spectrometry for the straw. Records were thus established for about 100 years for the straw and 3.9, 10.1 and 10.2 ka for the stalagmites. The range of variability in d18Oc and d13Cc this century is about two-thirds of that experienced over the entire Holocene, and is most simply explained in terms of the oceanic source area of rain. Stable isotope variations in three stalagmites show some general similarities, but have significant differences in detail, which underlines the necessity to base palaeoclimatic interpretations on more than one speleothem record. The d18Oc of each stalagmite varies positively with temperature, indicating the dominance of the ocean source of evaporation in determining the isotopic composition of precipitation and hence speleothem calcite in the Holocene. This conclusion is contrary to that of other authors working in New Zealand, who identified a negative relationship between d18Oc and temperature, while examining time periods extending across the Last Glacial Maximum. It is concluded here that, whereas the ice volume effect dominates the large climatic shifts of glacial-interglacial amplitude, the oceanic source effect becomes more important during the period of relatively stable sea level during the Holocene. Results also indicate a late-Holocene altitudinal effect of 0.2{per thousand} d18Oc per 100 m and an associated temperature relationship of about 0.26{per thousand} per{degrees}C. The average of two records identifies the postglacial climatic optimum to lie in the interval from prior to 10 ka BP to 7.5 ka BP, when d18Oc values were up to 0.6{per thousand} less negative than present, implying an average annual mean temperature that was up to 2.3{degrees}C warmer. The average of three speleothem records for the last 3900 years reveals the coldest period of the Holocene to have occurred about 3 to 2 ka BP, when d18Oc values were typically 0.4{per thousand} more negative than present and average temperatures may have been 1.5{degrees}C cooler. Mean annual temperature variability of about 2{degrees}C was sometimes experienced in little more than 100 years
Keywords: area, bp, calcite, carbon, centuries, century, climatic optimum, dating, district, dominance, holocene, holocene speleothem, ice, ice-volume, island, isotope, isotopes, isotopic composition, late-holocene, level, new zealand, new-zealand, north, north-island, ocean, oxygen, palaeoclimate, precipitation, rain, range, record, records, sea, sea level, sea-level, series, signal, source, speleothem, speleothem record, speleothems, stable isotope, stable isotopes, stable-isotope, stalactite, stalagmite, stalagmites, temperature, temperatures, term, time, uranium, values, variability, variation, volume,