KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Featured article from geoscience journal
Elsevier
Journal of Hydrology, 2011, Vol 398, Issue 3, p. 202-211
Karstification beneath dam-sites: From conceptual models to realistic scenarios
Hiller Thomas, Kaufmann Georg, Romanov Douchko
Abstract:
Dam-sites and reservoirs located above soluble rock are often damaged by increased leakage through the sub-surface within the life-time of the structure. The high hydraulic gradients driving the water through the fracture and fissure system of the bedrock have a strong impact on the aquifer evolution. The increased permeability, if not prevented, leads to an imminent danger of high leakage rates (breakthrough) as well. As a result, the structural safety of the dam-site itself is at risk. Past experience has shown that this may have large environmental and economical consequences.
For a better understanding of the evolution of karst aquifer systems in the vicinity of dam-sites, a three-dimensional conceptual model is presented. We show the evolution of the karst aquifer for simple three-dimensional dam-site setups. Keeping the symmetry and simplicity of the models we can relate our results to the two- and one-dimensional scenarios presented in the past. Implementing a statistical fracture network and topographic information to this basic setup we show that these complex three-dimensional properties of the real aquifers, have a significant influence on the karstification, and cannot always be addressed by two -and one-dimensional models.
Research highlights
- Three-dimensional karst evolution modeling of dam-sites. - Relating the 3D models to former 2D and 1D models. - Implementation of statistical fracture network and topography.
Dam-sites and reservoirs located above soluble rock are often damaged by increased leakage through the sub-surface within the life-time of the structure. The high hydraulic gradients driving the water through the fracture and fissure system of the bedrock have a strong impact on the aquifer evolution. The increased permeability, if not prevented, leads to an imminent danger of high leakage rates (breakthrough) as well. As a result, the structural safety of the dam-site itself is at risk. Past experience has shown that this may have large environmental and economical consequences.
For a better understanding of the evolution of karst aquifer systems in the vicinity of dam-sites, a three-dimensional conceptual model is presented. We show the evolution of the karst aquifer for simple three-dimensional dam-site setups. Keeping the symmetry and simplicity of the models we can relate our results to the two- and one-dimensional scenarios presented in the past. Implementing a statistical fracture network and topographic information to this basic setup we show that these complex three-dimensional properties of the real aquifers, have a significant influence on the karstification, and cannot always be addressed by two -and one-dimensional models.
Research highlights
- Three-dimensional karst evolution modeling of dam-sites. - Relating the 3D models to former 2D and 1D models. - Implementation of statistical fracture network and topography.