Search in KarstBase
![]() |
![]() |
An integrated geophysical study was performed over a known cave in Colorado Bend State Park (CBSP), Texas, where shallow karst features are common within the Ellenberger Limestone. Geophysical survey such as microgravity, ground penetrating radar (GPR), direct current (DC) resistivity, capacitively coupled (CC) resistivity, induced polarization (IP) and ground conductivity (GC) measurements were performed in an effort to distinguish which geophysical method worked most effectively and efficiently in detecting the presence of subsurface voids, caves and collapsed features. Horseshoe Chimney Cave (HCC), which is part of a larger network of cave systems, provides a good control environment for this research. A 50 x 50 meter grid, with 5 m spaced traverses was positioned around the entrance to HCC. Geophysical techniques listed above were used to collect geophysical data which were processed with the aid of commercial software packages. A traditional cave survey was conducted after geophysical data collection, to avoid any bias in initial data collection. The survey of the cave also provided ground truthing. Results indicate the microgravity followed by CC resistivity techniques worked most efficiently and were most cost effective, while the other methods showed varying levels of effectiveness.
The historical study of Australian caves and caving areas is fascinating although involving the expenditure of vast amounts of time. Australia's early days are unusually well-documented, but in the case of caves the early history is usually wrapped up in rumour, hearsay and clouded by lack of written record. Most research work means long hours poring over old newspaper files, mine reports, land department records and so on, little of which is catalogued. A small number of exploration journals and scientific studies have extensive material on special cave areas, and of these, the volume by Rev. Julian Edmund Woods, F.G.S., F.R.S.V., F.P.S., etc., and is one of the most interesting. This book gives the ideas and beliefs of 100 years ago concerning the origin, development and bone contents of caves and makes interesting reading in the light of more recent studies of cave origins. Wood's study "Geological Observations in South Australia : Principally in the District South-East of Adelaide" was published in 1862 by Longman, Green, Roberts and Green, London. In a preface dated November 15, 1861, Rev. Woods points out that the book was written while he was serving as a missionary in a 22,000 square mile district, and "without the benefit of reference, museum, library, or scientific men closer than England". Up to the time of writing, almost no scientific or geological work had been done in South Australia and much of the area was completely unexplored. The book, also, contained the first detailed description of caves in the south-east of the state. Father Woods writes about many different types of caves in South Australia, for instance, the "native wells" in the Mt. Gambier/Mt. Shanck area. These are caves, rounded like pipes, and generally leading to water level. Woods points out their likeness to artificial wells. He also writes of sea cliff caves, particularly in the Guichen Bay area, and blow holes caused by the action of the waves on the limestone cliffs. Woods discusses many other types of caves found further inland, particularly bone caves. Father Woods discusses cave origins under two sub-heads: 1. Trap rock caves generally resulting from violent igneous action, and 2. Limestone caves resulting from infiltration of some kind. He is mainly concerned with limestone caves which he sub-divides into (a) crevice caves - caves which have arisen from fissures in the rock and are therefore wedge-shaped crevices, widest at the opening, (b) sea-beach caves, caves which face the seashore and are merely holes that have been worn by the dashing of the sea on the face of the cliff, (c) egress caves, or passages to give egress to subterranean streams, (d) ingress caves, or passages caused by water flowing into the holes of rocks and disappearing underground. These caves would have entrance holes in the ground, opening very wide underneath, and having the appearance of water having entered from above, (e) finally a group of caves which he lists by use as "dens of animals".
The new data from the Big Hole and its vicinity give some further support to the view maintained previously as to its origin, though an approach through water chemistry proved non-committal. Difficulties attaching to an origin by true phreatic solution of underlying limestone through circulations of groundwater of meteoric provenance remain however. Nevertheless, the possibility, not considered previously, that the Big Hole is due to hydrothermal solution in the manner of many collapse structures associated with uranium ore bodies in southwestern U.S.A. finds no support in the regional geology of the Shoalhaven valley, though it could produce features of the right dimensions. Previous lack of a complete parallel to the Big Hole has been removed by reference to the furnas of southern Brazil where a similar origin to the one proposed here is also inferred.
The Trobriand group of coral islands is situated 100 miles off the north-east coast of Papua, north of the D'Entrecasteaux Islands. Kitava, the most easterly island of the group, is approximately 4~ miles by 2~ miles. It is 15 miles east of Wawela on the main island of Kiriwina, though 50 miles by sea from Losuia around the north coast of Kiriwina. The population is approximately 2,000 natives, the majority being subsistence farmers and fishermen. No Europeans live on the island. Yams, taro, sweet potatoes and bananas are the main garden products. Fish, chickens and eggs are eaten, and pigs are used in ceremonial feasts or "sing-sings" . Kitava is served by occasional boats, but cannot be reached by air. The Administration boat, "The Pearl", is based at Losuia and calls at irregular intervals of a few weeks, the journey from Losuia taking about five hours. Kitavans travel far in their canoes, and the ceremonial Kula trade involves journeys to other Trobriand islands, the Amphletts, Dobu and the Woodlark Islands. The authors spent four days on Kitava in May, 1969, and lived in a native house near the village of Bomapou in the north of the island. Trade tobacco was used as currency to pay for food, and to pay guides and carriers. A trade store has since been established near the beach, a mile from the main village of Kumwageya, and payment in cash may be more acceptable in future. Children appreciate being paid in chewing gum, known throughout the islands as "P.K.". Very little English is spoken on the island and we were fortunate in having the company of Mr. Gilbert Heers who speaks the Kiriwinan language fluently.
The Cooleman-Right Cooleman system is an abandoned, nearly horizontal outflow cave of shallow phreatic nature, modified by breakdown. It lies just inside and parallel to a gorge wall of Cave Creek. This relationship, and others like it here, are attributed to a greater water input into the limestone along the lines of dissection of Cooleman Plain rather than to the mechanical effects of slope retreat such as Renault has favoured. This outflow cave has been replaced as the major rising of this karst by the Blue Waterholes a short distance down valley; shallow incision of the valley has accompanied the shift of the rising. This down valley movement does not seem to be explicable by removal of overlying impervious beds in this direction to expose more limestone but by a displacement of the main artery feeding the risings in the course of the deepening of underground karst development as a result of incision. However, this displacement is not more favourable to the emergence of the underground drainage of the Plain as a whole. The downstream shift of the rising therefore remains problematic. Discussion favours interpretation of Cooleman Cave entrance as a secondary breach into the outflow cave previously emerging at Right Cooleman entrance, aided by lateral erosion of the surface stream, but it is recognised that the evidence is far from conclusive.
![]() |
![]() |