Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That harness is an arrangement of tape for attaching the lower body (seat harness) or the upper (chest harness) to ascenders or descenders [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for air-temperature (Keyword) returned 15 results for the whole karstbase:
Showing 1 to 15 of 15
RECOGNITION OF MICROCLIMATE ZONES THROUGH RADON MAPPING, LECHUGUILLA CAVE, CARLSBAD-CAVERNS-NATIONAL-PARK, NEW-MEXICO, 1991, Cunningham Ki, Larock Ej,
Radon concentrations range from < 185 to 3,515 Bq m-3 throughout Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Concentrations in the entrance passages and areas immediately adjacent to these passages are controlled by outside air temperature and barometric pressure, similar to other Type 2 caves. Most of the cave is developed in three geographic branches beneath the entrance passages; these areas maintain Rn levels independent of surface effects, an indication that Rn levels in deep, complex caves or mines cannot be simply estimated by outside atmospheric parameters. These deeper, more isolated areas are subject to convective ventilation driven by temperature differences along the 477-m vertical extent of the cave. Radon concentrations are used to delineate six microclimate zones (air circulation cells) throughout the cave in conjunction with observed airflow data. Suspected surface connections contribute fresh air to remote cave areas demonstrated by anomalous Rn lows surrounded by higher values, the presence of mammalian skeletal remains, CO2 concentrations and temperatures lower than the cave mean, and associated surficial karst features

SUBTERRANEAN TRANSPORT OF RADON AND ELEVATED INDOOR RADON IN HILLY KARST TERRAINS, 1992, Gammage Rb, Dudney Cs, Wilson Dl, Saultz Rj, Bauer Bc,
Subterranean networks of cavities and fissures can present circulatory systems facilitating convective and advective transport of radon-bearing air. Evidence points to aerostatic pressure differentials being the principal driving force for subterranean transport of radon in some hilly limestone terrains of the southern Appalachians; differences between the underground and outside air temperatures, and the concomitant differences in air density, appear to be the dominant factor in producing the differences in aerostatic pressure. Examples are presented of houses experiencing elevated indoor levels as a consequence of being built on top of and apparently communicating with such subterranean systems. The location of a house near the upper or lower end of a subterranean circulatory system can result in amplification of indoor radon levels in winter or summer, respectively. These phenomena have been studied in and around houses located in the hilly karst areas of Huntsville, AL, and Oak Ridge, TN

Radon concentration changes in the air of two caves in Poland, 1999, Przylibski T. A. ,
The paper presents spatial and seasonal radon concentration changes in the air of two caves in Poland on the basis of measurements during 1995-1997. A process of seasonal radon concentration changes in the caves' air was identified, based on research on radon occurrence in caves carried out for over 20 years. A major role in this process was ascribed to ventilation caused by atmospheric temperature changes. High radon concentrations are observed in the warm half-year (May-August), when the average air temperature exceeds the average temperature of the cave interior. Low concentrations occur, however, in the cold half-year (December-January), and a relatively sharp increase or decrease in radon concentration is related to changes in atmospheric temperatures relative to the average temperature in the cave interior. The amplitude of these radon concentration changes may reach several kBq m(-3). In the Radochowska Cave the lowest monthly radon concentration (0.06 kBq m(-3)) was recorded in December 1996, while the highest (1.37 kBq m(-3)) was observed in August 1996. In the Niedzwiedzia Cave the lowest value (0.10 kBq m(-3)) was observed in January 1997 and the highest (4.18 kBq m(-3)) was noted in March 1997. The spatial variation of radon concentrations is mainly due to the morphology of the chambers and corridors of a cave, and by the distance between the measurement point and the entrance holes. As a rule, locations further from the entrance have poorer ventilation and higher radon concentrations. (C) 1999 Elsevier Science Ltd. All rights reserved

Variability of karstic permeability between unconfined and confined aquifers, Grand Canyon region, Arizona, 2000, Huntoon P. W. ,
Most of the ground water in the Grand Canyon region circulates to springs in the canyon through the thick, deeply buried, karstified Cambrian-Mississippian carbonate section. These rocks are collectively called the lower Paleozoic carbonates and comprise the Redwall-Muav aquifer where saturated. The morphologies of the caves in the Grand Canyon are primarily a function of whether the carbonates are unconfined or confined, a distinction that has broad significance for ground-water exploration and which appears to be generally transferable to other carbonate regions. Caves in unconfined high-gradient environments tend to be highly localized, partially saturated, simple tubes, whereas those in confined low-gradient settings are saturated 2- or even 3-dimensional mazes. The highly heterogeneous, widely spaced conduits in the unconfined settings make for difficult drilling targets, whereas the more ubiquitously distributed mazes in confined settings are far easier to target. The distinctions between the storage characteristics within the two classes are more important. There is minimal ground-water storage in the unconfined systems because cave passages tend to be more widely spaced and are partially drained. In contrast, there is maximum storage in the saturated mazes in the confined systems. Consequently, system responses to major storm recharge events in the unconfined systems are characterized by flow-through hydraulics. Spring discharge from the unconfined systems tends to be both flashy and highly variable from season to season, but total dissolved solids are small. In contrast, the pulse-through hydraulics in the artesian systems cause fluctuations in spring discharge to be highly moderated and, in the larger basins, remarkably steady. Both total dissolved solids and temperatures in the waters from the confined aquifers tend to be elevated because most of the water is derived from storage. The large artesian systems that drain to the Grand Canyon derive water from areally extensive, deep basins where the water has been geothermally heated somewhat above mean ambient air temperatures. Karst permeability is created by the flow system, so dissolution permeability develops most rapidly in those volumes of carbonate aquifers where flow concentrates. Predicting where the permeability should be best developed in a carbonate section involves determining where flow has been concentrated in the geologic past by examining the geometry and hydraulic boundary conditions of the flow field. Karstification can be expected to maximize in those locations provided enough geologic time has elapsed to allow dissolution to adjust to the imposed boundary conditions. The rate of adjustment in the Grand Canyon region appears to be related to the degree of saturation. The artesian systems are far better adjusted to hydraulic gradients than the unconfined systems, a finding that probably implies that there is greater contact between the solvent and rock in the saturated systems. These findings are not arcane distinctions. Rather, successful exploration for ground water and management of the resource is materially improved by recognition of the differences between the types of karst present. For example, the unsaturated conduit karsts in the uplifts make for highly localized, high risk drilling targets and involve aquifers with very limited storage. The conduits have highly variable flow rates, but they carry good quality water largely derived from seasonal flow-through from the surface areas drained. In contrast, the saturated basin karsts, with more ubiquitous dissolutional permeability enhancement, provide areally extensive low risk drilling targets with large ground-water storage. The ground water in these settings is generally of lesser quality because it is derived mostly from long term storage

Infiltration measured by the drip of stalactites, 2000, Sanz E. , Lopez J. J. ,
The hydrodynamic processes and mechanisms involved in rain infiltration and recharge in local areas of karst terrain can be identified and quantified by using measurements of the seepage of cave stalactites, Detailed measurements of the seepage of stalactites in seven caves located in an area close to the land surface, or the subcutaneous area of the karst, show a diversity of complex factors involved in infiltration: type of precipitation (rain or snow), air temperature, soil type and thickness, etc., which give rise to larger or smaller variations of flow in the espeleothem hydrographs, In some cases, no explanation can be found for the response of stalactites to rainfall, while in others there is a relationship between outer atmospheric parameters and the recharge represented by the stalactite drip. Romperopas Cave (Spain) has both a rapid and a basic flow, with hydrograph recessions similar to those observed in other caves. Water seepage in this cave varies greatly both in space and in time. The infiltration in Altamira Cave (Spain) was calculated and a multiple regression was found between infiltration, rain and outside air temperature. In other cases, the balance of the water on the soil is responsible for the seepage, Thus, a precipitation runoff numerical model that simulated the stalactite hydrographs could be applied to the Baradla and Beke Caves (Hungary), The complex properties of the ground, which are required for other flow numerical models for the unsaturated zone, were not taken into consideration

Geological factors affecting the chemical characteristics of the thermal waters of the carbonate karstified aquifers of Northern Vietnam, 2000, Drogue C, Cat Nn, Dazy J,
In northern Vietnam, exposed carbonate rock formations cover an area of more than 50,000 km(2). Their accumulated thickness from the Cambrian to the Triassic is in some places as much as 3000 m. Numerous thermal waters (springs and wells) occur in these strongly karstified carbonate massifs. This is the result of significant ancient and present orogenic activity, as the region demonstrates by its strong seismic activity. These karstic formations are water-bearing and strongly recharged by rainfall of between 1600 mm and 2600 mm per year in 90% of the area concerned. In view of the average annual air temperatures ( 17 degreesC-25 degreesC according to the region), 23 sample springs or wells were chosen with water temperatures of between 29 degreesC and 68 degreesC. Hydrochemical characteristics of these thermal waters emerging in different carbonate-rock units were examined by chemical analyses of major ions. In this large region, thermal waters are divided into four hydrochemical types: the Na-Cl type resulting from the intrusion of sea water for distances of up to several kilometres inland and depths of 1000 m, the Ca-SO4 type, probably resulting from the leaching of deposits of metallic sulphides that are widely distributed in these carbonate-rock units, and finally the Ca-HCO3 and Mg-HCO3 types which are chemically similar to fresh karstic waters in limestones and dolostones. The occurrence of these thermal groundwaters as well as their chemical characteristics seem to indicate the existence of large-scale deepseated groundwater flow systems in the karstic aquifers

Palaeowaters in European coastal aquifers -- the goals and main conclusions of the PALAEAUX project, 2001, Edmunds Wm,
The PALAEAUX project has brought together up-to-date geochemical, isotopic and hydrogeological information on coastal groundwaters across Europe in a transect from the Baltic to the Canary Islands. These data have been interpreted in relation to past climatic and environmental conditions, as well as extending and challenging concepts about the evolution of groundwater near the present day coastlines. Groundwater movement beyond the present coastline as well as emplacement on shore to greater depths (up to 500 m) than allowed by the present-day flow regime has occurred, hence offshore freshwater reserves are inferred in some coastal areas. The main attributes of palaeowaters, in terms of water quality, are their high bacterial purity, total mineralization that is often less than that of modern waters and being demonstrably free of anthropogenic chemicals. However, in the Mediterranean coastal areas, lower recharge leads to higher salinity conditions in both palaeo- and modern waters. Freshwater of high quality originating from different climatic conditions to the present day, when the sea level was much lower, is found at depth beneath the present-day coastline in several countries. Recharge is shown to have been more or less continuous during the past 100 ka, even beneath the ice, as demonstrated by groundwaters from Estonia, having {delta}O values of c. -22%o. However, elsewhere (UK and Belgium) an age gap can be recognized indicating that no recharge took place at the time of the last glacial maximum. Devensian recharge temperatures (soil air temperatures) were some 6{degrees}C colder across Europe than at the present day. The development of aquifers in Europe during the past 50-100 a, by abstraction from boreholes, has generally disturbed flow systems that have evolved over varying geological timescales, especially those derived from the Late Pleistocene and Holocene. Hydrogeophysical logging has demonstrated time and quality stratified aquifers resulting in mixed waters being produced on pumping. A range of specific indicators, including 3H, 3H/3He, 85Kr, chlorofluoro-carbons and pollutants, have been used to recognize the extent to which waters from the modern (industrial) era have penetrated into the aquifers, often replacing the natural palaeogroundwaters. In the coastal regions, many problems for management are identified, including issues relating to quantity and quality of water, seasonal demand, pollution risks and ecosystem damage, requiring a new look at legislation

Monthly and annual effective infiltration coefficients in Dinaric karst: example of the Gradole karst spring catchment, 2001, Bonacci O,
The problems and present methods for the calculation of monthly and annual effective infiltration coefficients in Dinaric karat catchments which cover areas smaller than 200 km(2) are discussed. An example is given of the catchment of the Gradole karat spring, which covers 114 km(2) The climate on the catchment is North Mediterranean, with average annual rainfall of 986 mm, average air temperature of 11.4 degreesC, and average discharge from the Gradole Spring of 1.98 m(3) s(-1). All the data refer to a period from 1987 to 1998. An auto-correlation analysis is carried out of daily and monthly discharges from the spring and monthly rainfall on the catchment. Special attention has been given to determination of monthly effective infiltration coefficients. It was found that the time-scale effect makes it infeasible to use the equation for effective infiltration coefficient, because it gives values greater than 1 in 25% of cases, which is theoretically impossible. Therefore, two different procedures for calculation of monthly effective infiltration coefficients are given, out of which one uses the master depletion curve. This procedure gives acceptable and physically well-established values of mean long-term monthly effective infiltration coefficients. Obtained values can be used for regional analyses as well as for water resources management in karat regions. There was also a strong relationship between mean monthly air temperatures of the catchment and mean monthly effective infiltration coefficients. It is found that rainfall distribution during the year significantly influences the annual effective infiltration coefficients, which for the Gradole catchment ranges between 0.356 and 0.763 with the mean value of 0.57

Coastal karst springs in the Mediterranean basin : study of the mechanisms of saline pollution at the Almyros spring (Crete), observations and modelling, 2002, Arfib B, De Marsily G, Ganoulis J,
Variations in salinity and flow rate in the aerial, naturally salty spring of Almyros of Heraklion on Crete were monitored during two hydrological cycles. We describe the functioning of the coastal karstic system of the Almyros and show the influence of the duality of the flow in the karst (conduits and fractured matrix) on the quality of the water resource in the coastal area. A mechanism of saltwater intrusion into this highly heterogeneous system is proposed and validated with a hydraulic mathematical model, which describes the observations remarkably well. Introduction. - Fresh groundwater is a precious resource in many coastal regions, for drinking water supply, either to complement surface water resources, or when such resources are polluted or unavailable in the dry season. But coastal groundwater is fragile, and its exploitation must be made with care to prevent saltwater intrusion as a result of withdrawal, for any aquifer type, porous, fractured or karstic. In karstic zones, the problem is very complex because of the heterogeneous nature of the karst, which makes it difficult to use the concept of representative elementary volume developed for porous or densely fractured systems. The karstic conduits focus the major part of the flow in preferential paths, where the water velocity is high. In coastal systems, these conduits have also an effect on the distribution of the saline intrusion. As was shown e.g. by Moore et al. [1992] and Howard and Mullings [1996], both freshwater and salt-water flow along the fractures and conduits to reach the mixing zone, or the zone where these fluids are superposed in a dynamic equilibrium because of their differences in density ; but the dynamics of such a saltwater intrusion are generally unknown and not represented in models. Such coastal karstic systems are intensely studied at this moment in the Mediterranean region [Gilli, 1999], both as above sea-level or underwater springs, for potential use in areas where this resource would be of great value for economic development. This article discusses the freshwater-saltwater exchange mechanisms in the karstic aquifer of the Almyros of Heraklion aquifer (Crete) and explains the salinity variations observed in the spring. First, the general hydrogeology of the study site is described, then the functioning of the spring : a main conduit drains the freshwater over several kilometres and passes at depth through a zone where seawater is naturally present. The matrix-conduit exchanges are the result of pressure differences between the two media. These processes are represented in a mathematical model that confirms their relevance. General hydrogeology of the studied site. - The karstic coastal system of the Almyros of Heraklion (Crete) covers 300 km2 in the Ida massif whose borders are a main detachment fault, and the Sea of Crete in the north, the Psiloritis massif (highest summit at 2,456 m) in the south and west, and the collapsed basin of Heraklion filled in by mainly neo-geneous marl sediments in the east. The watershed basin consists of the two lower units of characteristic overthrust formations of Crete (fig. 1) : the Cretaceous Plattenkalk and the Cretaceous Tripolitza limestones. The two limestone formations are locally separated by interbedded flysch or phyllade units that form an impervious layer [Bonneau et al., 1977 ; Fassoulas, 1999] and may lead to different flow behaviour within the two karstic formations. Neo-tectonic activity has dissected these formations with large faults and fractures. The present-day climate in Crete is of Mediterranean mountain type, with heavy rain storms and snow on the summits in winter. Rainfall is unevenly distributed over the year, with 80 % of the annual total between October and March and a year-to-year average of 1,370 mm. The flow rate of the spring is high during the whole hydrologic cycle, with a minimum in summer on the order of 3 m3.s-1 and peak flow in winter reaching up to 40 m3.s -1. The water is brackish during low flow, up to a chloride content of 6 g.l-1, i.e. 23 % of seawater, but it is fresh during floods, when the flow rate exceeds 15 m3.s-1. During the 1999-2000 and 2000-2001 hydrologic cycles, the water was fresh during 14 and 31 days, respectively. The water temperature is high and varies very little during the year (see table I). In the areas of Keri and Tilissos (fig. 1), immediately south of the spring, the city of Heraklion extracts water from the karstic system through a series of 15 wells with depth reaching 50 to 100 m below sea level. Initially, when the wells were drilled, the water was fresh, but nowadays the salinity rises progressively, but unequally from well to well (fig. 2). The relatively constant temperatures and salinities of the wells, during the hydrological cycle, contrast with the large salinity variations at the spring (fig. 2 and table I). They show that the karstic system is complex and comprises different compartments, where each aquifer unit reacts to its individual pressures (pumping, rainfall) according to its own hydrodynamic characteristics [Arfib et al., 2000]. The Almyros spring seems disconnected from the surrounding aquifer and behaves differently from that which feeds the wells (upper Tripolitza limestone). It is recharged by fresh water from the mountains, which descends to depths where it probably acquires its salinity. The spring would thus be the largest resource of the area, if it was possible to prevent its pollution by seawater. A general functioning sketch is proposed (fig. 3), which includes the different geological units of interest. Identification of the functioning of the Almyros spring through monitoring of physical and chemical parameters. - The functioning of the aquifer system of the Almyros spring was analysed by monitoring, over two hydrological cycles, the level of the spring, the discharge, the electric conductivity and the temperature recorded at a 30 min time interval. In the centre of the watershed basin, a meteorological station at an altitude of 800 m measures and records at a 30 min time interval the air temperature, rainfall, relative humidity, wind velocity and direction ; moreover, an automatic rain gauge is installed in the northern part of the basin at an altitude of 500 m. The winter floods follow the rhythm of the rainfall with strong flow-rate variations. In contrast, the summer and autumn are long periods of drought (fig. 7). The flow rate increases a few hours after each rainfall event ; the water salinity decreases in inverse proportion to the flow rate a few hours to a few days later. Observations showed that the water volume discharged at the Almyros spring between the beginning of the flow rate increase and the beginning of the salinity decrease is quite constant, around 770,000 m3 (fig. 4) for any value of the flow rate, of the salinity and also of the initial or final rainfall rates. To determine this constant volume was of the upmost importance when analyzing the functioning of the Almyros spring. The lag illustrates the differences between the pressure wave that moves almost instantaneously through the karst conduit and causes an immediate flow rate increase after rainfall and the movement of the water molecules (transfer of matter) that arrives with a time lag proportionate to the length of the travel distance. The variation of the salinity with the flow rate acts as a tracer and gives a direct indication of the distance between the outlet and the seawater entrance point into the conduit. In the case of the Almyros, the constant volume of expelled water indicates that sea-water intrusion occurs in a portion of the conduit situated several kilometres away from the spring (table II), probably inland, with no subsequent sideways exchange in the part of the gallery leading up to the spring. As the lag between the flow rate and the salinity recorded at the spring is constant, one can correct the salinity value by taking, at each time step, with a given flow rate, the salinity value measured after the expulsion of 770,000 m3 at the spring, which transforms the output of the system so as to put the pressure waves and the matter transfer in phase [Arfib, 2001]. After this correction, the saline flux at the spring, equal to the flow rate multiplied by the corrected salinity, indicates the amount of sea-water in the total flow. This flux varies in inverse proportion to the total flow rate in the high-flow period and the beginning of the low-flow period, thereby demonstrating that the salinity decrease in the spring is not simply a dilution effect (fig. 5). The relationship that exists between flow rate and corrected salinity provides the additional information needed to build the conceptual model of the functioning of the part of the Almyros of Heraklion aquifer that communicates with the spring. Freshwater from the Psiloritis mountains feeds the Almyros spring. It circulates through a main karst conduit that descends deep into the aquifer and crosses a zone naturally invaded by seawater several kilometers from the spring. The seawater enters the conduit and the resulting brackish water is then transported to the spring without any further change in salinity. The conduit-matrix and matrix-conduit exchanges are governed by the head differences in the two media. Mathematical modelling of seawater intrusion into a karst conduit Method. - The functioning pattern exposed above shows that such a system cannot be treated as an equivalent porous medium and highlights the influence of heterogeneous structures such as karst conduits on the quantity and quality of water resources. Our model is called SWIKAC (Salt Water Intrusion in Karst Conduits), written in Matlab(R). It is a 1 D mixing-cell type model with an explicit finite-difference calculation. This numerical method has already been used to simulate flow and transport in porous [e.g. Bajracharya and Barry, 1994 ; Van Ommen, 1985] and karst media [e.g. Bauer et al., 1999 ; Liedl and Sauter, 1998 ; Tezcan, 1998]. It reduces the aquifer to a single circular conduit surrounded by a matrix equivalent to a homogeneous porous medium where pressure and salinity conditions are in relation with sea-water. The conduit is fed by freshwater at its upstream end and seawater penetrates through its walls over the length L (fig. 6) at a rate given by an equation based on the Dupuit-Forchheimer solution and the method of images. The model calculates, in each mesh of the conduit and at each time step, the head in conditions of turbulent flow with the Darcy-Weisbach equation. The head loss coefficient {lambda} is calculated by Louis' formula for turbulent flow of non-parallel liquid streams [Jeannin, 2001 ; Jeannin and Marechal, 1995]. The fitting of the model is intended to simulate the chloride concentration at the spring for a given matrix permeability (K), depth (P) and conduit diameter (D) while varying its length (L) and its relative roughness (kr). The spring flow rates are the measured ones ; at present, the model is not meant to predict the flow rate of the spring but only to explain its salinity variations. Results and discussion. - The simulations of chloride concentrations were made in the period from September 1999 to May 2001. The depth of the horizontal conduit where matrix-conduit exchanges occur was tested down to 800 m below sea level. The diameter of the conduit varied between 10 and 20 m, which is larger than that observed by divers close to the spring but plausible for the seawater intrusion zone. The average hydraulic conductivity of the equivalent continuous matrix was estimated at 10-4 m/s. A higher value (10-3 m/s) was tested and found to be possible since the fractured limestone in the intrusion zone may locally be more permeable but a smaller value (10-5 m/s) produces an unrealistic length (L) of the saline intrusion zone (over 15 km). For each combination of hydraulic conductivity, diameter and depth there is one set of L (length) and kr (relative roughness) calibration parameters. All combinations for a depth of 400 m or more produce practically equivalent results, close to the measured values. When the depth of the conduit is less than 400 m, the simulated salinity is always too high. Figure 7 shows results for a depth of 500 m, a diameter of 15 m and a hydraulic conductivity of 10-4 m/s. The length of the saltwater intrusion zone is then 1,320 m, 4,350 m away from the spring and the relative roughness coefficient is 1.1. All the simulations (table II) need a very high relative roughness coefficient which may be interpreted as an equivalent coefficient that takes into account the heavy head losses by friction and the variations of the conduit dimensions which, locally, cause great head losses. The model simulates very well the general shape of the salinity curve and the succession of high water levels in the Almyros spring but two periods are poorly described due to the simplicity of the model. They are (1) the period following strong freshwater floods, where the model does not account for the expulsion of freshwater outside the conduit and the return of this freshwater which dilutes the tail of the flood and (2) the end of the low-water period when the measured flux of chlorides falls unexpectedly (fig. 5), which might be explained by density stratification phenomena of freshwater-saltwater in the conduit (as observed in the karst gallery of Port-Miou near Cassis, France [Potie and Ricour, 1974]), an aspect that the model does not take into account. Conclusions. - The good results produced by the model confirm the proposed functioning pattern of the spring. The regulation of the saline intrusion occurs over a limited area at depth, through the action of the pressure differences between the fractured limestone continuous matrix with its natural saline intrusion and a karst conduit carrying water that is first fresh then brackish up to the Almyros spring. The depth of the horizontal conduit is more than 400 m. An attempt at raising the water level at the spring, with a concrete dam, made in 1987, which was also modelled, indicates that the real depth is around 500 m but the poor quality of these data requires new tests to be made before any firm conclusions on the exact depth of the conduit can be drawn. The Almyros spring is a particularly favorable for observing the exchanges in the conduit network for which it is the direct outlet but it is not representative of the surrounding area. To sustainably manage the water in this region, it is essential to change the present working of the wells in order to limit the irreversible saline intrusion into the terrain of the upper aquifers. It seems possible to exploit the spring directly if the level of its outlet is raised. This would reduce the salinity in the spring to almost zero in all seasons by increasing the head in the conduit. In its present state of calibration, the model calculates a height on the order of 15 m for obtaining freshwater at the spring throughout the year, but real tests with the existing dam are needed to quantify any flow-rate losses or functional changes when there is continual overpressure in the system. The cause of the development of this karstic conduit at such a great depth could be the lowering of the sea level during the Messinian [Clauzon et al., 1996], or recent tectonic movements

Start of the last interglacial period at 135 ka: Evidence from a high Alpine speleothem, 2002, Spotl Christoph, Mangini Augusto, Frank Norbert, Eichstadter Rene, Burns Stephen J. ,
A detailed study of growth periods of a flowstone from Spannagel Cave in the Zillertal Alps (Austria) at [~]2500 m above sea level, a site highly sensitive to climate changes, offers unprecedented new insights into Pleistocene climate change in Central Europe. Flowstone sample SPA 52 has a high U content (to 116 ppm); analyses of this sample reveal that episodes of calcite deposition started at 204 {} 3 ka, 135 {} 1.2 ka, and 122 ka, suggesting that at these times, the mean air temperature at this high Alpine site was within 1.5 {degrees}C of the present-day condition. The beginning of growth at 135 ka corresponds to the ending of the last glaciation and is concordant with a midpoint age for the penultimate deglaciation at 135 {} 2.5 ka, as deduced from the absolutely dated oxygen isotope curve in sediments from the Bahamas, as well as with recent coral evidence from Barbados indicating a high sea level already by 135.8 {} 0.8 ka. This set of data supports evidence against Northern Hemisphere forcing of termination II, because the insolation maximum is at 127 ka

Variation of karst spring discharge in the recent five decades as an indicator of global climate change: A case study at Shanxi, northern China, 2005, Guo Q. H. , Wang Y. X. , Ma T. , Li L. X. ,
Karst in Shanxi Province is representative of that in northern China, and karst water systems discharge in the form of springs that are among the most important sources for local water supply. Since the 1950s, attenuation has been the major trend of discharge variation of most karst springs at Shanxi. Based on the case study of 7 karst springs including Niangziguan, Xin'an, Guozhuang, Shentou, Jinci, Lancun, and Hongshan springs, the discharge variation process of karst springs was divided into natural fluctuation phase and anthropogenic impact phase. Discharge attenuation of the 7 karst springs was controlled mainly by climate and human activities, with their contributions being respectively about 60% and 40%. According to the difference of the effect of climate and human activities for each spring, attenuation modes of spring discharge fall into three types: natural process dominated attenuation type, exploitation induced process dominated attenuation type, and mixed attenuation type. The total restored discharge variation of 7 karst springs matched well with the global air temperature change in 1956-2000, clearly indicating the trend of global warming and aridity in the last several decades, and the analysis of discharge variation processes of karst springs can be used as a new tool for global change studies

Spatiotemporal analysis of air conditions as a tool for the environmental management of a show cave (Cueva del Agua, Spain), 2006, Fernandezcortes A, Calaforra Jm, Sanchezmartos F,
We recorded the air temperature and carbon dioxide concentration within the Cueva del Agua, a cave in Spain, under natural conditions prior to the cave being opened to tourists. Geostatistical tools are useful techniques for characterizing microclimate parameters with the aim of adopting measures to ensure the conservation and sound environmental management of tourist caves. We modelled the spatial distribution of these microclimatic parameters over an annual cycle using iterative residual kriging, revealing the stratification of air related to the cave's topography. Replenishment of the cave air is activated by convective circulation that accompanies the development of inversions in the thermal gradient of the air. Comparison of the spatial distribution of each microclimatic parameter over time enables us to characterize the exchange of air between the cave interior and the outside, as well as identify potential areas that could be opened to tourists and determine suitable visiting schedules

High 222Rn levels in a show cave (Castanar de Ibor, Spain): Proposal and application of management measures to minimize the effects on guides and visitors, 2006, Lario J. , Sanchezmoral S. , Cuezva S. , Taborda M. , Soler V. ,
Castanar de Ibor (Caceres, Spain) is a low energy cave showing very high micro-environmental stability throughout the annual cycle and minimum rates of energy exchange with the atmosphere. The radon (222Rn) levels monitored inside Castanar cave reached 50,462 Bq m-3 in April 2005 and had an annual average of 32,246 Bq m-3. Annual variations in Rn concentration seem mainly related to differences in internal and external temperature. The highest values of 222Rn concentration occur during winter and early spring when air-cave temperature surpasses the external air temperature, evidencing very low air exchange rate. These values are the highest recorded in any Spanish cave, either natural or show, and are much higher than the average in most caves around the world. The calculation of the effective dose received by guides during 2004 showed values higher than the maximum effective dose recommended by authorities. Two management measurements were applied to reduce these doses: reduction of the time of visit to a maximum of 60 min, and opening the cave door 1 hour before the entrance of the guides and visitors. These management measures were effective, as they led to a decrease of 10-12% in 222Rn in the cave atmosphere during visits and prevented the guides from being exposed to higher than recommended doses of radiation

Long-term changes in the cave atmosphere air temperature as a result of periodic heliophysical processes, 2006, Stoeva Penka, Stoev Alexey, Kiskinova Nadya,
Climatic trends connected with short- and long-period variations of the solar activity occur as a reaction even in such conservative media as the air volumes of karst caves. The yearly mean air temperatures in the zone of constant temperatures of four show caves in Bulgaria were studied for a period of 36 years (1968-2003). The examination was made by everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave. The caves are situated at different altitudes and geographic latitude. Seasonal fluctuations of the yearly mean air temperature in the ZCT of the explored caves have been identified by Fourier analysis. The same analysis has been applied for the Sunspot number and Apmax indices, which are representatives of the solar and geomagnetic activity, for the same period of data available. Autocorrelograms have been used for examination of the seasonal patterns of the air temperatures in the ZCT in every cave and in Sunspot number and Apmax indices. Cross-spectrum analysis has been applied for retrieving the correlations between air ZCT temperatures in the caves and solar and geomagnetic activity. It has been found that the correlation between ZCT temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices. It has been found that is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity, i.e., coronal mass ejections (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes (Webb, D.F., 2002. CMEs and the solar cycle variation in their geoeffectiveness. In: Wilson, A. (Ed.), Proceedings of the SOHO 11 Symposium on From Solar Min to Max: Half a Solar Cycle with SOHO, 11-15 March 2002, Davos, Switzerland. ESA Publications Division, Noordwijk, 2002, ISBN 92-9092-818-2, pp. 409-419). This work can contribute to studying the mechanisms of atmospheric circulation changes and calibration of long-period climatic data read from cave speleothems and deposits

Seasonal Variations in Modern Speleothem Calcite Growth in Central Texas, U.S.A, 2007, Banner Jl, Guilfoyle A, James Ew, Stern La, Musgrove M,
Variations in growth rates of speleothem calcite have been hypothesized to reflect changes in a range of paleoenvironmental variables, including atmospheric temperature and precipitation, drip-water composition, and the rate of soil CO2 delivery to the subsurface. To test these hypotheses, we quantified growth rates of modern speleothem calcite on artificial substrates and monitored concurrent environmental conditions in three caves across the Edwards Plateau in central Texas. Within each of two caves, different drip sites exhibit similar annual cycles in calcite growth rates, even though there are large differences between the mean growth rates at the sites. The growth-rate cycles inversely correlate to seasonal changes in regional air temperature outside the caves, with near-zero growth rates during the warmest summer months, and peak growth rates in fall through spring. Drip sites from caves 130 km apart exhibit similar temporal patterns in calcite growth rate, indicating a controlling mechanism on at least this distance. The seasonal variations in calcite growth rate can be accounted for by a primary control by regional temperature effects on ventilation of cave-air CO2 concentrations and/or drip-water CO2 contents. In contrast, site-to-site differences in the magnitude of calcite growth rates within an individual cave appear to be controlled principally by differences in drip rate. A secondary control by drip rate on the growth rate temporal variations is suggested by interannual variations. No calcite growth was observed in the third cave, which has relatively high values of and small seasonal changes in cave-air CO2. These results indicate that growth-rate variations in ancient speleothems may serve as a paleoenvironmental proxy with seasonal resolution. By applying this approach of monitoring the modern system, speleothem growth rate and geochemical proxies for paleoenvironmental change may be evaluated and calibrated

Results 1 to 15 of 15
You probably didn't submit anything to search for