Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That blowhole is 1. opening in the roof of a cave or cavern through which air is expelled vigorously. in coastal areas the phenomenon is usually due to compression of air within the cave by incoming tides or waves [20]. 2. cliff top entrance to a sea cave, also known as a geo, gloop, or gloup [9]. 3. (australian.) a small hole in the surface of the nullarbor plain through which air blows in and out with observable force, sometimes audibly [10]. related to breathing hole.synonyms: (french.) trou souffleur; (german.) windhohle; (greek.) ope ekphysosa; (italian.) bocca soffiante; (spanish.) soplador; (turkish.) uflenme agzi; (yugoslavian.) vjetrenica, veternica, puhaljka, pihalnik, dihalnik. see also steam hole.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for alunite (Keyword) returned 21 results for the whole karstbase:
Showing 1 to 15 of 21
Age of formation of Carlsbad Cavern, Lechuguilla Cave, and other caves of the Guadalupe Mountains based on 40Ar/39Ar-dating of alunite (abs.)., 1997, Polyak V. J. , Mcintosh W. C. , Given N. , Provencio P.

Hydrobasaluminite and Aluminite in Caves of the Guadalupe Mountains, New Mexico, 1998, Polyak, V. J. , Provencio, P.
Hydrobasaluminite, like alunite and natroalunite, has formed as a by-product of the H2S-H2SO4 speleogenesis of Cottonwood Cave located in the Guadalupe Mountains of New Mexico. This mineral is found as the major component of white pockets in the dolostone bedrock where clay-rich seams containing kaolinite, dickite, and illite have altered during speleogenesis to hydrobasaluminite, amorphous silica, alunite, and hydrated halloysite (endellite). Gibbsite and amorphous silica are associated with the hydrobasaluminite in a small room of Cottonwood Cave. Opalline sediment on the floor of this room accumulated as the cave passage evolved. Jarosite, in trace amounts, occurs in association with the opalline sediment and most likely has the same origin as hydrobasaluminite and alunite. The hydrobasaluminite was found to be unstable at 25C and 50% RH, converting to basaluminite in a few hours. Basaluminite was not detected in the cave samples. Aluminite has precipitated as a secondary mineral in the same small room where hydrobasaluminite occurs. It comprises a white to bluish-white, pasty to powdery moonmilk coating on the cave walls. The bedrock pockets containing hydrobasaluminite provide the ingredients from which aluminite moonmilk has formed. It appears that recent cave waters have removed alumina and sulfate from the bedrock pocket minerals and have deposited aluminite and gypsum along the cave wall. Gypsum, amorphous silica and sulfate-containing alumina gels are associated with the aluminite moonmilk.

Age and Origin of Carlsbad Cavern and Related Caves from 40Ar/39Ar of Alunite., 1998, Polyak V. J. , Mcintosh W. C. , Given N. , Provencio P.
40Ar/39Ar dating of fine-grained alunite that formed during cave genesis provides ages of formation for the Big Room level of Carlsbad Cavern [4.0 to 3.9 million years ago (Ma)], the upper level of Lechuguilla Cave (6.0 to 5.7 Ma), and three other hypogene caves (11.3 to 6.0 Ma) in the Guadalupe Mountains of New Mexico. Alunite ages increase and are strongly correlative with cave elevations, which indicates an 1100-meter decline in the water table, apparently related to tectonic uplift and tilting, from 11.3 Ma to the present. 40Ar/39Ar dating studies of the hypogene caves have the potential to help resolve late Cenozoic climatic, speleologic, and tectonic questions.

Age and Origin of Carlsbad Cavern and Related Caves from 40Ar/39Ar of Alunite, 1998, Polyak Victor J. , Mcintosh William C. , Ven Necip, Provencio Paula,

Overview of the Geological History of Cave Development in the Guadalupe Mountains, New Mexico, 2000, Hill, C. A.
The sequence of events relating to the geologic history of cave development in the Guadalupe Mountains, New Mexico, traces from the Permian to the present. In the Late Permian, the reef, forereef, and backreef units of the Capitan Reef Complex were deposited, and the arrangement, differential dolomitization, jointing, and folding of these stratigraphic units have influenced cave development since that time. Four episodes of karsification occurred in the Guadalupe Mountains: Stage 1 fissure caves (Late Permian) developed primarily along zones of weakness at the reef/backreef contact; Stage 2 spongework caves (Mesozoic) developed as small interconnected dissolution cavities during limestone mesogenesis; Stage 3 thermal caves (Miocene?) formed by dissolution of hydrothermal water; Stage 4 sulfuric acid caves (Miocene-Pleistocene) formed by H2S-sulfuric acid dissolution derived hypogenically from hydrocarbons. This last episode is reponsible for the large caves in the Guadalupe Mountains containing gypsum blocks/rinds, native sulfur, endellite, alunite, and other deposits related to a sulfuric acid speleogenetic mechanism.

Summary of the Timing of Sulfuric-Acid Speleogenesis for Guadalupe Caves Based on Ages of Alunite, 2000, Polyak, V. J. , Provencio, P. P.
The H2SO4 caves in the Guadalupe Mountains, New Mexico, USA, such as Carlsbad, Cottonwood, Endless, Lechuguilla, and Virgin caves, formed during the late Miocene and early Pliocene (12-4 Ma). It has been demonstrated that the caves at the higher elevations are the oldest. The timing of speleogenesis was determined by the 40Ar/39Ar dating of the mineral alunite, which is a direct by-product of H2SO4 speleogenesis.

Lechuguilla Cave is a hypogene cave formed by oxidation of ascending hydrogen sulfide from the Delaware Basin. A unique sediment deposit with characteristics suggesting derivation from the land surface, some 285 m above, was investigated. At this location, the observed stratigraphy (oldest to youngest) was: bedrock floor (limestone), cave clouds (secondary calcite), calcite-cemented silstone, finely laminated clay, and calcite rafts. Grain-size analysis indicates that the laminated clay deposits are composed of 59-82% clay-size minerals. The major minerals of the clay were determined by X-ray diffraction analysis and consist of interstratified illite-smectite, kaolinite, illite, goethite, and quartz. Scanning electron microscopy observations show that most of the clay deposit is composed of densely packed irregular-shaped clay-size flakes. One sample from the top of the deposit was detrital, containing well-rounded, silt-size particles. Surface soils are probably the source of the clay minerals. The small amount of sand- and silt-size particles suggests that detrital particles were transported in suspension. The lack of endellite and alunite is evidence that the clays were emplaced after the sulfuric-acid dissolution stage of cave formation. Fossil evidence also suggests a previously existing link to the surface

Sulfuric acid, hypogene karst in the Guadalupe mountains of New Mexico and West Texas, USA, 2000, Hill C. A.
Carlsbad Cavern, Lechuguilla Cave, and other caves in the Guadalupe Mountains are probably the worlds best examples of karst formed by sulfuric acid in a hypogene setting. Four episodes of karstification have occurred in these mountains from Late Permian time to the present, the sulfuric acid episode being the last of these four. Sulfuric acid karst can be recognized by its large passage size, ramiform-spongework pattern, horizontal passages connected by deep pits and fissures, location beneath structural and stratigraphic traps, gypsum and native sulfur deposits, and the sulfuric-acid/H2S indicator minerals endellite, alunite, natroalunite, and tyuyamunite. Guadalupe caves formed in a diffuse-flow aquifer regime where caves may have acted as mixing chambers for hypogene-derived H2S and meteoric-derived fresh water. How cave hydrology has been related to regional hydrology during the late-Tertiary to present is poorly understood. Sulfuric acid karst is an integral part of H2S-degassing hydrocarbon basins which also can contain economic sulfur and Mississippi Valley-type ore deposits.

Origin and Significance of Postore Dissolution Collapse Breccias Cemented with Calcite and Barite at the Meikle Gold Deposit, Northern Carlin Trend, Nevada, 2003, Emsbo P, Hofstra Ah,
The final event in a complicated hydrothermal history at the Meikle gold deposit was gold deficient but caused extensive postore dissolution of carbonate, collapse brecciation, and precipitation of calcite and barite crystals in the resulting cavities. Although previously interpreted to be part of the Carlin-type hydrothermal system, crosscutting relationships and U-Th-Pb geochronology constrain this hydrothermal event to late Pliocene time (ca. 2 Ma), nearly 36 Ma after ore formation. Mineralogic, fluid inclusion, and stable isotope data indicate that postore hydrothermal fluids were reduced, H2S-rich, unevolved meteoric waters ({delta}18O = -17{per thousand}) of low temperature (ca. 65{degrees}C). The{delta} 18O values of barite and calcite indicate that these minerals were in isotopic equilibrium, requiring that barite SO4 was derived from the oxidation of reduced sulfur; however, preexisting sulfides in breccia cavities were not oxidized. The{delta} 34S (15{per thousand}) values of barite are higher than those of local bulk sulfide and supergene alunite indicating that SO4 was not derived from supergene oxidation of local sulfide minerals. The 15 per mil {delta}34S value suggests that the H2S in the fluids may have been leached from sulfur-rich organic matter in the local carbonaceous sedimentary rocks. A reduced H2S-rich fluid is also supported by the bright cathodoluminescence of calcite which indicates that it is Mn rich and Fe poor. Calcite has a narrow range of {delta}13C values (0.3-1.8{per thousand}) that are indistinguishable from those of the host Bootstrap limestone, indicating that CO2 in the fluid was from dissolution of the local limestone. These data suggest that dissolution and brecciation of the Bootstrap limestone occurred where H2S-rich fluids encountered more oxidizing fluids and formed sulfuric acid (H2SO4). Intense fracturing in the mine area by previous structural and hydrothermal events probably provided conduits for the descent of oxidized surface water which mixed with the underlying H2S-rich waters to form the dissolving acid. The surface-derived fluid apparently contained sufficient oxygen to produce H2SO4 from H2S but not enough to alter pyrite to Fe oxide. Although H2S is an important gold-transporting ligand, the temperature was too low to transport a significant amount of gold. The presence of analogous calcite- and barite-lined cavities in other Carlin-type deposits suggests that the generation (and oxidation) of H2S-rich meteoric waters was a common phenomenon in north-central Nevada. Previous sulfur isotope studies have also shown that the Paleozoic sedimentary rocks were the principal source of H2S in Devonian sedimentary exhalative-type, Jurassic intrusion-related, Eocene Carlin-type, and Miocene low-sulfidation gold deposits in the region. The similar sulfur source in all of these systems suggests that basin brines, magmatic fluids, and meteoric waters all evolved to be H2S-rich ore fluids by circulation through Paleozoic sedimentary rocks. Thus, although not directly related to gold mineralization, the recent hydrologic history of the deposit provides important clues to earlier ore-forming processes that were responsible for gold mineralization

Authigenic halloysite from El-Gideda iron ore, Bahria Oasis, Egypt: characterization and origin, 2004, Baioumy Hm, Hassan Ms,
Halloysite in El-Gideda iron mine occurs as very soft, light and white-to-pinkish white pockets and lenses ranging in diameter from 50 cm to 1 m within the iron ore. Highly hydrated halloysite is the main constituent of these pockets beside some kaolinite and alunite. The diffraction pattern of the clay fraction (<2 {micro}m) shows a rather broad and diffuse 001 reflection spread between 10.3 and 13.6{degrees}2{theta}. Upon treatment, the 001 reflection of halloysite expands up to 10.94 A and 11.9 A corresponding to ethylene glycol and dimethyl formamide treatment, respectively. After these treatments, kaolinite appeared with its characteristic basal spacing (~7 A ). The percentage of halloysite in halloysite-intercalated kaolinite ranged between 80 and 90%. Heating to 350{degrees}C, produces a kaolinite-like structure (~7.1 A ) that developed to a metakaolinite-structure when heated to 550{degrees}C. Morphologically, halloysite appears as well developed tubes composed entirely of SiO2 and Al2O3, while kaolinite is characterized by very fine platelets arranged in book-like or rosette-like shapes. A differential thermal analysis curve of the studied halloysite showed an endothermic peak at ~138{degrees}C due to the dehydration of interlayer water of halloysite. The small shoulder at ~540{degrees}C and the endothermic peak at ~593{degrees}C is attributed to the dehydroxylation of halloysite, kaolinite and alunite. On the other hand the exothermic peak that appeared at 995{degrees}C is due to the formation of new phases such as mullite and/or spinel. The infrared vibrational spectrum is typical of highly disordered halloysite and kaolinite. Halloysite was formed as a result of alteration of the overlying glauconite suggesting intensive chemical alteration during a humid wet period that prevailed in the Bahria Oasis during the late Eocene. Glauconite alteration releases K, Fe, silica and alumina. Iron forms at least part of the iron ore in the El-Gideda mine while alumina forms halloysite as well as alunite when interacted with silica in an acidic environment

'Sour gas' hydrothermal jarosite: ancient to modem acid-sulfate mineralization in the southern Rio Grande Rift, 2005, Lueth V. W. , Rye R. O. , Peters L. ,
As many as 29 mining districts along the Rio Grande Rift in southern New Mexico contain Rio Grande Rift-type (RGR) deposits consisting of fluorite-barite sulfide-jarosite, and additional RGR deposits occur to the south in the Basin and Range province near Chihuahua, Mexico. Jarosite occurs in many of these deposits as a late-stage hydrothermal mineral coprecipitated with fluorite, or in veinlets that crosscut barite. In these deposits, many of which are limestone-hosted, jarosite is followed by natrojarosite and is nested within silicified or argillized wallrock and a sequence of fluorite-barite sulfide and late hematite-gypsum. These deposits range in age from similar to 10 to 0.4 Ma on the basis of Ar-40/Ar-39 dating of jarosite. There is a crude north-south distribution of ages, with older deposits concentrated toward the south. Recent deposits also occur in the south, but are confined to the central axis of the rift and are associated with modem geothermal systems. The duration of hydrothermal jarosite mineralization in one of the deposits was approximately 1.0 my. Most Delta(18)O(SO4)-OH values indicate that jarosite precipitated between 80 and 240 degrees C, which is consistent with the range of filling temperatures of fluid inclusions in late fluorite throughout the rift, and in jarosite (180 degrees C) from Pena Blanca, Chihuahua, Mexico. These temperatures, along with mineral occurrence, require that the jarosite have had a hydrothermal origin in a shallow steam-heated environment wherein the low pH necessary for the precipitation of jarosite was achieved by the oxidation of H2S derived from deeper hydrothermal fluids. The jarosite also has high trace-element contents (notably As and F), and the jarosite parental fluids have calculated isotopic signatures similar to those of modem geothermal waters along the southern rift; isotopic values range from those typical of meteoric water to those of deep brine that has been shown to form from the dissolution of Permian evaporite by deeply circulating meteoric water. Jarosite delta(34)S values range from -24 parts per thousand to 5 parts per thousand, overlapping the values for barite and gypsum at the high end of the range and for sulfides at the low end. Most delta(34)S values for barite are 10.6 parts per thousand to 13.1 parts per thousand and many delta(34)S values for gypsum range from 13.1 parts per thousand to 13.9 parts per thousand indicating that a component of aqueous sulfate was derived from Permian evaporites (delta(34)S = 12 2 parts per thousand). The requisite H2SO4 for jarosite formation was derived from oxidation of H2S which was likely largely sour gas derived from the thermochemical reduction of Permian sulfate. The low delta(34)S values for the precursor H2S probably resulted from exchange deeper in the basin with the more abundant Permian SO42-- at similar to 150 to 200 degrees C. Jarosite formed at shallow levels after the PH buffering capacity of the host rock (typically limestone) was neutralized by precipitation of earlier minerals. Some limestone-hosted deposits contain caves that may have been caused by the low pH of the deep basin fluids due to the addition of deep-seated HF and other magmatic gases during periods of renewed rifting. Caves in other deposits may be due to sulfuric acid speleogenesis as a result of H2S incursion into oxygenated groundwaters. The isotopic data in these 'sour gas' jarosite occurrences encode a recod of episodic tectonic or hydrologic processes that have operated in the rift over the last 10 my. (c) 2004 Elsevier B.V. All rights reserved

Mineralogical and Stable Isotope Studies of Kaolin Deposits: Shallow Epithermal Systems of Western Sardinia, Italy, 2005, Simeone R. , Dilles J. H. , Padalino G. , Palomba M. ,
Large kaolin deposits hosted by Miocene silicic pyroclastic rocks in northwestern Sardinia represent hydrothermal alteration formed within 200 m of the Miocene paleosurface. Boiling hydrothermal fluids ascended steeply dipping faults that are enveloped by altered rock. The broadly stratiform kaolin deposits constitute advanced argillic alteration that was produced in a steam-heated zone near the paleosurface overlying the deeper hydrothermal systems. The deeper zones represent two distinct types of epithermal systems: weakly acidic (inferred low-sulfidation) systems at Tresnuraghes and acidic (high-sulfidation) systems at Romana. Tresnuraghes is characterized at depth by chalcedony {} quartz {} barite veins within a 50-m-wide zone of K-feldspar-quartz-illite alteration and overlying local occurrences of chalcedony sinter, which define the paleosurface. Kaolin deposits near the paleosurface are characterized by zonation outward and downward from an inner shallow zone of kaolinite 1T-opal {} dickite {} alunite (<20-{micro}m-diam grains) to an outer deeper kaolinite 1M-montmorillonite-cristobalite. This zonation indicates formation by descending acidic fluids. The system evolved from ascending weakly acidic or neutral fluids that boiled to produce H2S-rich vapor, which condensed and oxidized within the near-surface vadose zone to form steam-heated acid-sulfate waters and kaolin alteration. At Romana, veins at depth contain chalcedony or quartz and minor pyrite and are enclosed in up to 20-m-wide zones of kaolinite 1T-quartz alteration. Near hydrothermal vents along the paleosurface, chalcedonic silica is enclosed within a zone of kaolinite 1T-alunite (<50-{micro}m-diam grains)-quartz-opal {} dickite {} cristobalite. Kaolin quarries near the paleosurface display outward and downward zoning to kaolinite 1T-opal {} cristobalite and then to montmorillonite-kaolinite 1T {} opal, consistent with formation by descending low pH fluid. The siliceous and advanced argillic alteration along steep conduits formed from acidic ascending magmatic-hydrothermal fluids, whereas the near-surface kaolin formed from steam-heated meteoric waters. Alteration mineral assemblages and stable isotope data provide evidence of the temperature and source of hydrothermal fluids. Barite from Tresnuraghes (average{delta} 18O = 17.1{per thousand},{delta} 34S = 18.8{per thousand}), one alunite sample from Romana ({delta}18O = 12.0{per thousand},{delta} D = -3{per thousand},{delta} 34S = 16.7{per thousand}), and quartz from both localities ({delta}18O = 15.9-22.0{per thousand}) formed in hydrothermal feeders. Source fluids were likely mixtures of meteoric water and minor magmatic fluid, similar to other epithermal systems. Kaolinite-dickite minerals from the kaolin deposits ({delta}18O = 16.6-21.4{per thousand},{delta} D = -43 to -53{per thousand}) formed from steam-heated meteoric water having{delta} D = - 20 per mil, consistent with the presence of anomalous Hg and fine-grained Na- and Fe-poor alunite. The laterally extensive kaolin deposits in Sardinia, and possibly similar deposits elsewhere in the world, appear to represent the uppermost parts of large hydrothermal systems that may be prospects for gold at depth

Alunite and natroalunite tell a story - The age and origin of Carlsbad Cavern, Lechuguilla Cave, and other sulfliric-acid type caves of the Guadalupe Mountains, 2006, Polyak V. J, Mcintosh W. C. , Provencio P. P. , Giiven N.

The mineral assemblage of caves within Salitrari Mountain (Cerna Valley, SW Romania): depositional environment and speleogenetic implications, 2010, Puscas Cristina M. , Onac Bogdan P. , Tamas Tudor

Eighteen minerals belonging to eight chemical groups were identified from three caves within Şălitrari Mountain, in the upper Cerna River basin (Romania) by means of scanning electron microscopy, electron microprobe analysis, and X-ray powder diffraction. One passage in the Great Cave from Şălitrari Mountain, the largest cave investigated, exhibits abnormal relative humidity and temperature ranges, allowing for a particular depositional environment. The cave floor is covered by alluvial sediments (ranging from cobble, sand, and clay to silt-sized material), bear bones, bat guano, and rubble. These materials reacted with percolating meteoric water and hydrogen sulfide-rich hypogene hot solutions, precipitating a variety of secondary minerals. Most of these minerals are common in caves (e.g. calcite, gypsum, brushite), however, some of them (alunite, aluminite, and darapskite) require very particular environments in order to form and persist. Cave passage morphologies suggest a complex speleogenetic history that includes changes from phreatic to vadose conditions. The latter was punctuated by a sulfuric acid dissolution/precipitation phase, partly overprinted by present-day vadose processes. The cave morphology and the secondary minerals associated with the alluvial sediments in these caves are used to unravel the region’s speleogenetic history.

Alunite formation within silica stalactites from the Sydney Region, South-eastern Australia, 2011, Wray, R. A. L. .

This paper presents X-ray diffraction and SEM evidence for the formation of alunite, and possibly small quantities of natroalunite, within opal-A stalactites formed on quartz sandstone near Sydney in south-eastern, Australia. Alunite has been reported as a speleogenetic mineral from sediments within a number of caves around the world, but this is believed to be the first report of speleothemic alunite in opaline silica speleothems. Individual alunite crystals have not been visually identified, but SEM X-ray element mapping suggests the alunite has formed amongst kaolinite clay. Sedimentary alunite and natroalunite formation is usually associated with the reaction of sulphuric acid on illite, smectite and kaolinite clay materials. In this location groundwater sulphate levels are not high, but evaporative concentration of stalactite drip-water containing small amounts of sulphuric acid generated by oxidization of pyrite might lower the pH to a level sufficiently acidic for conversion of kaolinite or illite to alunite. The ferrolysis of hydrous Fe2+-oxides, or the biochemical activities of bacteria or other micro-organisms, also provide conceivable pathways for the generation of pH sufficiently low to contribute to alunite formation. The occurrence of alunite in these silica stalactites, whilst unusual, is consistent with the normal silica stalactite-forming process in this region, and in accord with observations of the authigenic formation of alunite and groundwater opal in weathering profiles elsewhere.

Results 1 to 15 of 21
You probably didn't submit anything to search for