Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That aeolianite is see eolian calcarenite.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for arizona (Keyword) returned 42 results for the whole karstbase:
Showing 1 to 15 of 42
Fungal communities on speleothem surfaces in Kartchner Caverns, Arizona, USA, , Vaughan Michael J. , Maier Raina M. , Pryor Barry M.

Kartchner Caverns, located near Benson, Arizona, USA, is an active carbonate cave that serves as the major attraction for Kartchner Caverns State Park. Low-impact development and maintenance have preserved prediscovery macroscopic cavern features and minimized disturbances to biological communities within the cave.. The goal of this study was to examine fungal diversity in Kartchner Caverns on actively-forming speleothem surfaces. Fifteen formations were sampled from five sites across the cave. Richness was assessed using standard culture-based fungal isolation techniques. A culture-independent analysis using denaturing gradient gel electrophoresis (DGGE) was used to assay evidence of community homogeneity across the cave through the separation of 18S rDNA amplicons from speleothem community DNA. The culturing effort recovered 53 distinct morphological taxonomic units (MTUs), corresponding to 43 genetic taxonomic units (GTUs) that represented 21 genera. From the observed MTU accumulation curve and the projected total MTU richness curve, it is estimated that 51 percent of the actual MTU richness was recovered. The most commonly isolated fungi belonged to the genera Penicillium, Paecilomyces, Phialophora, and Aspergillus. This culturebased analysis did not reveal significant differences in fungal richness or number of fungi recovered across sites. Cluster analysis using DGGE band profiles did not reveal distinctive groupings of speleothems by sample site. However, canonical correspondence analysis (CCA) analysis of culture-independent DGGE profiles showed a significant effect of sampling site and formation type on fungal community structure. Taken together, these results reveal that diverse fungal communities exist on speleothem surfaces in Kartchner Caverns, and that these communities are not uniformly distributed spatially. Analysis of sample saturation indicated that more sampling depth is required to uncover the full scale of mycological richness across spelothem surfaces.

Karst-like features in badlands of the Arizona Petrified Forest, 1963, Mears Brainerd,
Sinks, disappearing streams, hanging valleys, and natural bridges add a karst-like element to the miniature mountain topography represented in badlands. The Chinle Formation [Triassic] of the Petrified Forest in Arizona largely consists of compact, montmorillonitic and illitic claystones. Sinks in it result from disaggregation of swelling clay minerals rather than solution which affects limestone in true karsts. Ravines whose bottoms are pierced by sinks may develop into hanging valleys because their channels, robbed of surface flow downstream from these swallow holes, cannot keep pace with downcutting in the master drainage to which they are tributary. Growth of the sinks soon creates a disappearing stream that continues to deepen the upstream segment of a ravine. Thus the abandoned downstream segment beyond the sinks, no longer eroded by the stream, develops into a transverse barrier. Where the abandoned channel was initially short, the barrier may be eventually narrowed by weathering and slope erosion to form a natural bridge. Other bridges consist of jumbled material. that has collapsed from steep valley walls, undercut by small stream meanders

Soda-Niter in North Central Arizona Earth Cracks, 1977, Hill Carol A. , Eller P. Gary

Climatic Change and the Evolution of Cave Invertebrates in the Grand Canyon, Arizona, 1980, Peck, Stewart B.

Mineralization of breccia pipes in northern Arizona, 1985, Wenrich Karen J. ,

Nitrocalcite in Kartchner Caverns, Kartchner Caverns State Park, Arizona, 1992, Hill Carol A. , Buecher Robert H.

Tufa and Travertine deposits of the Grand Canyon [Arizona, U.S.A.], 1997, Ford T. D. , Pedley H. M.

Richard Lake, an evaporite-karst depression in the Holbrook basin, Arizona, 1997, Neal J. T. , Colpitts R. M. ,
Richard Lake is a circular depression 35 km SE of Winslow, Arizona, about 1.6 km wide and with topographic closure of 15-23 m. The depression is 5 km south of McCauley Sinks, another depressed area about 2 km wide which contains some 40 large sinkholes. Richard Lake formerly contained water after heavy rains prior to headwater drainage modification but is now dry most of the time. It is situated within the Moenkopi / Kaibab outcrop belt with Coconino Sandstone at shallow depth near the southwestern margin of the subsurface Permian evaporite deposit in the Holbrook Basin. Outcropping strata are predominantly limestone, but the salt-karst features result from collapse of these units into salt-dissolution cavities developed in the Corduroy Member of the Schnebly Hill Formation of the Sedona Group (formerly called the Supai Salt) that underlies the Coconino. Richard Lake is interpreted as a collapse depression containing concentric faults, pressure ridges, and a 200m wide sinkhole in the center. A second set of pressure ridges parallels the axis of the nearby western end of the Holbrook Anticline, trending generally N 30 degrees W. In the alluvium at the bottom of the central sinkhole, two secondary piping drain holes were observed in early 1996. Northwest-trending fissures also were observed on the depression flanks, essentially parallel to the regional structure. The presence of Richard Lake amidst the preponderance of salt-karst features along the Holbrook Anticline suggests a similar origin by salt dissolution, but with distinct manifestation resulting from variation in overburden thick?less and consolidation. Similarities of origin between Richard Lake and McCauley Sinks seem likely, because of their similar geological setting, size, appearance, and proximity. Two lesser developed depressions of smaller dimensions occur in tandem immediately west along a N 62 degrees W azimuth. Secondary sinkholes occur within each of these depressions, as at Richard Lake. Breccia pipes are apt to be found beneath all of these structures

Bats of Kartchner Caverns State Park, Arizona, 1999, Buecher, D. C. , Sidner, R. M.
Kartchner Caverns, in southeastern Arizona, is a summer maternity roost for approximately 1000-2000 cave myotis (Myotis velifer). The pregnant females first arrive at the cave in late April, give birth in June, and have left by mid- September. These bats are an important element in the cave ecosystem because their excrement introduces nutrients, which support a complex invertebrate cave fauna. Bat population densities and emergence behavior was monitored between 1988-1991. Other bat species seen using the entrance areas of the cave include Corynorhinus townsendi and Choeronycteris mexicana. Because bats are easily disturbed by human intrusion into the roost, the baseline study was accomplished using low-disturbance techniques in an effort to provide the greatest amount of data with the least disturbance to the bat colony. These techniques included limited visual observations in the roost and netting bats only on the surface at a nearby water tank. During the baseline study, an episode of predation by a carnivore (Bassariscus astutus) caused the bats to abandon the site for a short time. Carbon-14 dating of guano from the Throne and Rotunda Rooms suggests that Myotis velifer used the Back Section of Kartchner Caverns 50-45 years Ka.

Microclimate Study of Kartchner Caverns, Arizona, 1999, Buecher, R. H.
A detailed two-year study of the microclimate in Kartchner Caverns determined that the most significant problem in maintaining the microclimate of the cave is the potential for drying out due to increased airflow. Two factorsa small, hypothesized upper second entrance and a slight geothermal warming of the cavecontrol natural airflow and increase the amount and intensity of winter air exchange. The average amount of water reaching the cave is 7.9 mm/yr, only twice the amount lost by evaporation from cave surfaces. Kartchner Caverns has an average relative humidity (RH) of 99.4%. Useful measurement of RH required a dewpoint soil psychrometer rather than a sling psychrometer. Moisture loss from cave surfaces is proportional to relative humidity, and small changes in RH have a dramatic effect on evaporation from cave surfaces. A lowering of RH to 98.7% would double the evaporation rate and start to dry out the cave. The volume of air exchange in the cave was estimated from direct measurement, changes in CO2 concentration, and temperature profile models. All of these methods are consistent with a volume of 4,000 m/day entering the cave during the winter. During the summer, the direction of airflow reverses and the volume of air leaving the cave is much smaller than during the winter months. Surface air is almost always drier than cave aironly during the summer months when rain occurs does outside air contain more moisture. However, the rate of air exchange is greatly reduced during the summer, which minimizes any potential effect of increased outside moisture. Radon concentrations in the cave are high enough to be of concern for long-time employees but not for the general public. Radon222 concentrations average 90 pCi/L and radon daughters average 0.77 Working Levels (WL) in the main part of the cave. During the winter, radon levels in the Echo Passage are up to six times higher than the rest of the cave due to the passages stable microclimate and limited air movement, which greatly reduces radon removal by plateout. Natural removal by ventilation is only a minor factor in determining radon levels in the rest of the cave.

Pollen and Other Microfossils in Pleistocene Speleothems, Kartchner Caverns, Arizona, 1999, Davis, O. K.
Pollen and other microfossils have been recovered from six carbonate speleothems in three Kartchner Caverns rooms: Grand Central Station (samples T2, T3, T4), the Bathtub Room (T11, T12), and Granite Dells (T16). The carbonate samples were dated from 194-76 Ka. The pollen concentration is greatest (~2 grain/cm?) in sample T11, which has many layers of clastic sediment, and the concentration is least in T4 (~0.05 grain/cm?), which has few mud layers. Therefore, the pollen was probably present in sediments washed into the cave, perhaps during floods. Although the pollen abundance in sample T4 is too low for confident interpretation, modern analogs for the five other samples can be found on the Colorado Plateau in areas that today are wetter and colder than the Kartchner Caverns locality. Agave pollen in samples T2 and T4 indicates that this important source of nectar was in the area during at least the latter part of the Pleistocene. Two orobatid mite exoskeletons recovered in speleothem T4 were probably washed into the cave with the pollen and mud trapped in the speleothems.

Dating of Speleothems in Kartchner Caverns, Arizona, 1999, Ford, D. C. , Hill, C. A.
Uranium-series dates on calcite travertine samples collected from Kartchner Caverns range from ~200- 40 Ka. These dates span from the Illinoian glacial to the Wisconsin glacial, but the majority cluster within the wetter Sangamon interglacial. Petromorphic vein quartz (>35 Ka from alpha spectrometry and >1 Ma from 234U/238U ratios) dates from an earlier thermal episode associated with Basin and Range faulting. All that can be surmised about the time of cave dissolution from these dates is that it happened >200 Ka

Hydrogeology of Kartchner Caverns State Park, Arizona, 1999, Graf, C. G.
Three distinct hydrogeologic systems occur within Kartchner Caverns State Park, Arizona, each in fault contact with the other two. The southeastern corner and eastern edge of the park is part of the large graben that formed the San Pedro Valley during Miocene Basin and Range faulting. A thick alluvial sequence fills this graben and contains a regional aquifer covering 1000 km. One well in the park penetrates this aquifer. The groundwater level measured in this well was 226 m below land surface (1167 m msl), which is 233 m lower than the lowest measured point inside of Kartchner Caverns (1400 m msl). A pediment occupies a small part of the southwestern corner of the park. Structurally, this feature is part of the Whetstone Mountains horst rising above the park to the west. The pediment consists of a bedrock surface of Precambrian Pinal Schist overlain by a few tens of meters of granite wash sediments. Groundwater occurs at depths of 4-18 m below land surface in wells tapping the granite wash sediments. Data from these wells indicate that the zones of saturation within the granite wash sediments are probably of limited lateral extent and yield little water to wells. At the boundary between the pediment and the carbonate ridge containing Kartchner Caverns, the water table in the granite wash aquifer is 20 m higher than the bottom of the nearest known cave passage, located about 200 m to the east.The arid carbonate hills occupying the northwestern part of the park are the erosional remnants of a fault block (the Kartchner Block) that was displaced downward with respect to the Whetstone Mountains horst to the west. Kartchner Caverns is wholly contained in a ridge of highly faulted Mississippian Escabrosa Limestone and cuts conspicuously across Escabrosa beds dipping 10-40 to the southwest and west. Meteoric water enters the Kartchner Block and Kartchner Caverns from infiltration of runoff in washes that border the block and from overhead infiltration of precipitation. A small amount of groundwater also may flow into the Kartchner Block from the schist pediment to the south. Response in the cave to these fluxes is slow. As calculated from past records, the probability of flooding in the cave in any one year is about 57%.

Overview of Kartchner Caverns, Arizona, 1999, Hill, C. A.
In this paper, the sequence of events for Kartchner Caverns and surrounding region are correlated and traced from the Mississippian Period to the present. Pre-cave events include the deposition of the Escabrosa Limestone during the Mississippian Period and block faulting and hydrothermal activity in the Miocene Epoch. The cave passages formed in the shallow phreatic zone ~ 200 Ka. Vadose events in the cave include the inwashing of pebble gravels and a maximum deposition of travertine during the Sangamon interglacial. Backflooding by undersaturated water caused bevelling of the limestone and travertine. Recent events include the habitation of the cave by vertebrates and invertebrates, and the discovery and development of the cave by humans.

Mineralogy of Kartchner Caverns, Arizona, 1999, Hill, C. A.
The mineralogy of Kartchner Caverns is both diverse and significant. Six different chemical classes are represented in this one cave: carbonates, nitrates, oxides, phosphates, silicates, and sulfates. It is significant primarily because: (1) the silicate minerals, nontronite and rectorite, have never before been reported from a cave occurrence; (2) the nitrate mineral, nitrocalcite, has never been described using modern techniques; (3) birdsnest needle quartz has been reported only from one other, non-cave, locality; and (4) extensive brushite moonmilk flowstone has not been reported from anywhere else in the world. Kartchner is a beautiful cave because its carbonate speleothems are colorful (shades of red, orange, yellow and tan) and alive (still wet and growing).

Results 1 to 15 of 42
You probably didn't submit anything to search for