Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That sotano is (spanish for cellar or basement.) term used in mexico for deep vertical shafts in limestone, which may or may not lead to a cave [10].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for black sea basin (Keyword) returned 7 results for the whole karstbase:
Controversy over the great flood hypotheses in the Black Sea in light of geological, paleontological, and archaeological evidence, , Yankohombach Valentina, Gilbert Allan S. , Dolukhanov Pavel,
Legends describing a Great Flood are found in the narratives of several world religions, and the biblical account of Noah's Flood is the surviving heir to several versions of the ancient Mesopotamian Flood Myth. Recently, the story of the biblical deluge was connected to the Black Sea, together with the suggestion that the story's pre-Mesopotamian origins might be found in the Pontic basin [Ryan, W.B.F., Pitman, III, W.C., 1998. Noah's Flood: The New Scientific Discoveries About the Event That Changed History. Simon and Schuster, New York]. Based on the significance of this flood epic in the Judeo-Christian tradition, popular interest surged following publication of the idea.Currently, two Great Flood scenarios have been proposed for the Black Sea: (1) an Early Holocene event caused by catastrophic Mediterranean inflow at 7.2 ky BP (initial hypothesis of [Ryan et al., 1997. An abrupt drowning of the Black Sea shelf. Marine Geology 138, 119-126]) or 8.4 ky BP (modified hypothesis of [Ryan et al., 2003. Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Science 31, 525-554.); and (2) a Late Pleistocene event brought on by Caspian influx between 16 and 13 ky BP [Chepalyga, A.L., 2003. Late glacial Great Flood in the Black Sea and Caspian Sea. GSA Annual Meeting and Exposition, 2-5 November 2003, Seattle, USA, p. 460]. Both hypotheses claim that the massive inundations of the Black Sea basin and ensuing large-scale environmental changes had a profound impact on prehistoric human societies of the surrounding areas, and both propose that the event formed the basis for the biblical Great Flood legend.This paper attempts to determine whether the preponderance of existing evidence sustains support for these Great Floods in the evolution of the Black Sea. Based upon established geological and paleontological data, it finds that the Late Pleistocene inundation was intense and substantial whereas the Early Holocene sea-level rise was not. Between 16 and 13 ky BP, the Late Neoeuxinian lake (the Late Pleistocene water body in the Pontic basin pre-dating the Black Sea) increased rapidly from ~-14 to -50 m (below the present level of the Black Sea), then rose gradually to ~-20 m by about 11 ky BP. At 11-10 ky BP (the Younger Dryas), it dropped to ~-50 m. When the Black Sea re-connected with the Sea of Marmara at about 9.5 ky BP, inflowing Mediterranean water increased the Black Sea level very gradually up to ~-20 m, and in so doing, it raised the salinity of the basin and brought in the first wave of Mediterranean immigrants. These data indicate no major drawdown of the Black Sea after the Younger Dryas, and they do not provide evidence for any catastrophic flooding of the Black Sea in the Early Holocene.In addition, available archaeological and paleoenvironmental evidence from the Pontic region reveal no recognizable changes in population dynamics between 14 and 6 ky BP that could be linked to an inundation of large magnitude [Dolukhanov, P., Shilik, K., 2006. Environment, sea-level changes, and human migrations in the northern Pontic area during late Pleistocene and Holocene times. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 297-318; Stanko, V.N., 2006. Fluctuations in the level of the Black Sea and Mesolithic settlement of the northern Pontic area. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 371-385]. More specifically, Mesolithic and early Neolithic archaeological data in southeastern Europe and Ukraine give no indications of shifts in human subsistence or other behavior at the time of the proposed catastrophic flood in the Early Holocene [Anthony, D., 2006. Pontic-Caspian Mesolithic and Early Neolithic societies at the time of the Black Sea Flood: A small audience and small effects. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 345-370; Dergachev and Dolukhanov, 2006. The Neolithization of the North Pontic area and the Balkans in the context of the Black Sea Floods. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 489-514]

Messinian event in the black sea, 1979, Hsu Kenneth J. , Giovanoli Federico,
Three holes were drilled during the 1975 DSDP Leg 42B drilling the Black Sea. A section from Hole 380, at 2107 m water depth on the western edge of the abyssal plain, is 1074 m thick, and provides the most complete stratigraphic section. Dating of the sediments is based upon (1) fossil evidence from pollen, crustaceans, benthic foraminifera, and diatoms, (2) correlation with climatic changes and with unusual isochronous events that have been dated elsewhere, (3) paleomagnetic data, and (4) estimates of sedimentation rate.The history of Black Sea sedimentation recorded by the DSDP cores includes black shale sedimentation during the Late Miocene, followed by periodic chemical sedimentation from Late Miocene to Early Quaternary, and a change to dominantly terrigenous sedimentation from the Middle Quaternary. These hemipelagic and turbiditic sediments were deposited in lacustrine and brackish marine environments. The Messinian sediments, however, consist of stromatolitic dolomite, oolitic sands, and coarse gravels, deposited in supratidal and intertidal environments. The intercalation of the shallow-water sediments in a deep-water sequence suggests a drastic lowering of the water-level within the Black Sea basin during the Messinian so that the edge of the present abyssal plain was then the edge of a shallow lake.The Messinian draw-down phase of the Black Sea was in existence for about 100,000 years during the Lago-Mare stage of the salinity crisis. The evaporated waters formed an alkaline lake before it was drowned by a brackish marine transgression correlative to the Trubi transgression of the Mediterranean

Quaternary Paleoclimatology of the Black Sea basin, 1979, Schrader Hans Joachim,
The occurrence of polyhaline, mesohaline and oligohaline diatom, silicoflagellate, ebridian and chrysomonad populations in late Quaternary Black Sea sediments (DSDP Leg 42B) forms the basis for reconstruction of surface water paleosalinities in the Black Sea basin over the last 3 million years. Four major periods with increased salinites are separated by extended freshwater periods. Based on paleosalinites, indicators of trophic freshwater conditions and changes in diatom species diversity, a correlation is made to the northern Europian glacial--interglacial stratigraphy and this correlation is used to place paleoenvironmental events into a chronostratigraphy. The `synchronous' late Quaternary occurrence of sediments rich in organic carbon in both the Eastern Mediterranean and the Black Sea supports this interpretation.Three different stages in the interaction between the Black Sea and the Eastern Mediterranean Sea are defined: Stage A (exchange of freshwater and marine water similar to the present day flux) during the Holocene, Eemian, Holsteinian and Pliocene; Stage B (freshwater conditions with only occasional marine spills) during the Saalian, the Waalian, the Tiglian and the Praetiglian; and Stage C (freshwater conditions with no inflow of marine waters) during the Weichselian, the Elsterian and Eburonian

Carbonate rocks in the Black Sea basin: indicators for shallow water and subaerial exposure during Miocene--Pliocene time, 1979, Stoffers P. , Muller G. ,
Drilling in the Black Sea in general revealed three types of sediments: terrigenous, chemical, and biogenic. Terrigenous muds predominate in the Pleistocene whereas chemical sediments are abundant in the lower Pleistocene--Pliocene to Late Miocene sedimentary section. Biogenic constituents play a minor role only. The chemical sediments include calcite (lake chalk), Mg-calcite, aragonite, siderite and dolomite. Among these, the dolomites of Pliocene to Late Miocene age are most interesting. They were encountered in the two drill sites close to the Bosporus drilled in 2115 to 1750 m water depth, respectively. The dolomites show a great variety of criteria (e.g. intraclasts, algae mats, crusts, pellets, oolites), indicating a shallow water environment with occasional subaerial exposure and supratidal evaporitic conditions. The formation of these shallow water carbonates in the Black Sea is supposed to correlate with the Messinian salinity crisis in the Mediterranean

Palaeogeographic environment during the desiccation of the Black Sea, 1983, Kojumdgieva Emilia,
During the latest Chersonian (about 10.3 m.y. ago) tectonic movements took place leading to an elevation of the Crimean-Caucasian chain and to an isolation of the Fore-Caucasian part of the Black Sea Basin. This part of the basin had been draining the rivers of the Russian Platform and after the isolation it became desalinized, while the main part of the Black Sea Basin was almost desiccated and evaporites, mainly dolomites, formed in it due to the predominant calcium---magnesium---carbonate composition of the Chersonian Sea waters. These dolomites are found in the drillings of DSDP Leg 42B and are confirmed geophysically.The tectonic movements during the latest Chersonian led to the formation of a series of grabens along which the Mediterranean Sea invaded the north Aegean area and a little later (during the Early Maeotian) the Black Sea

Palaeoseismic events in karst terrains along the northern Bulgarian Black Sea coast, 2001, Angelova D,
The study of the palaoseismic events in the karst terrains of the Bulgarian Black Sea coast is a very important up-to-date problem. The investigated region is one of the highest-energy regions in Bulgaria with established and recorded catastrophic historic and contemporary earthquakes. The terrain is subjected to the influence not only of its own earthquake foci but also of those in Romania and Russia. The palaeoearthquakes that caused considerable disturbances in the karst terrains along the Northern Bulgarian Black Sea coast have left significant traces. They caused disturbances in the environment and the relief (rearrangement of the surface and ground water karst basins, partially or entirely collapsed caves, deformed caves, oil, gas and salt intrusions and gravitationally formed caves). The ecological consequences in historic and contemporary aspects were catastrophic. The palaeoseismic dislocations were formed as a result of global, regional and local geodynamic events related with the destruction of the Moezian platform and the regional extension of the Black Sea basin. The time of their display and their spatial interrelations were established as a result of complex investigations accompanied by original documents

Hypogene speleogenesis in the Cenozoic carbonates of the Prichernomorsky artesian basin (north Black Sea region), 2011, Klimchouk A. B. , Timokhina E. I. , Amelichev G. N.

This paper demonstrates the dominant hypogenic origin of caves and other karst features in the Prichernomorsky artesian basin, a major hydrogeological structure of the north Black Sea region. The basin occupies the south of the continental part of Ukraine and the north-central plain part of the Crimea Peninsula and is dominated by the Neogene (lower through middle Miocene) and Paleogene (Eocene through Paleocene) carbonate rocks, intercalated with sands, sandstones, clays and marls. The key study areas, in which some limestone members are exposed and partially drained, lie in the opposed sides of the basin: the north Black Sea region in the continental part (caves in Early Pliocene and Miocene limestones) and the Inner Range of the fore-mountain Crimea in the south, where the basin borders with the fold-trust Alpine mountain region (caves in Eocene and Paleocene limestones). The hypogenic origin of caves is strongly suggested by the analysis of cave morphology and occurrence relative to lithostratigraphy and structural features, cave sediments, isotopic and mineralogical data, and paleohydrogeological analysis. Despite of differences in age and diagenetic maturity of the host rocks, the caves demonstrate remarkable common features imposed by their common origin. The hypogenic speleogenetic model well explains observed specific hydrogeological and geochemical features of the regional multi-storey aquifer system in the central confined part of the basin. Hypogene speleogenesis is likely to play a role in the formation of carbonate-hosted reservoirs, as well as in the migration and accumulation of hydrocarbons in the Prichernomorsky basin.

Results 1 to 7 of 7
You probably didn't submit anything to search for