Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That transmissibility coefficient is the use of the term transmissibility has been replaced by transmissivity [22]. see transmissivity.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for branching (Keyword) returned 11 results for the whole karstbase:
The fine structure of Hamann's organ in Leptodirus hohenwarti, a highly specialised cave bathysciinae (Coleoptera, Catopidae)., 1978, Accordi Fiorenza, Sbordoni Valerio
Hamann's organ in Leptodirus hohenwarti a highly specialized cave Bathysciinae, has been studied under the TEM, SEM and light microscope. This receptor organ located in the 7th, 9th and 10th antennal articles and previously referred to as the "vesicule olfactive" and as the "antennal organ" or "antennal vesicle", reaches its highest degree of structural complexity in leptodirus. This paper attempts to establish some degree of synonymy among the terms used by earlier authors in describing the various antennal parts and sensilla. Five types of sensilla to be found in the organ are described, namely cribrose-stick sensilla, cribrose-utricular sensilla, star-shaped sensilla, claviform sensilla and branching setae. Comparisons within Bathysciinae species and among the latter and other subfamilies of Catopidae reveal differences in the number of vesicles and in the number and structures of sensilla, these differences appear to depend on i) the degree of phylogenetic relationships among taxa and 2) the degree of specialization to cave environment. The considerable complexity of Hamann's organ, unrivalled by other insects organs, apart from light receptors, suggests that it has a plurality of functions. Its hygroreceptor role, supported by recent experimental work, is discussed here.

ORIGIN AND MORPHOLOGY OF LIMESTONE CAVES, 1991, Palmer A. N. ,
Limestone caves form along ground-water paths of greatest discharge and solutional aggressiveness. Flow routes that acquire increasing discharge accelerate in growth, while others languish with negligible growth. As discharge increases, a maximum rate of wall retreat is approached, typically about 0.01-0.1 cm/yr, determined by chemical kinetics but nearly unaffected by further increase in discharge. The time required to reach the maximum rate is nearly independent of kinetics and varies directly with flow distance and temperature and inversely with initial fracture width, discharge, gradient, and P(CO2). Most caves require 10(4) - 10(5) yr to reach traversable size. Their patterns depend on the mode of ground-water recharge. Sinkhole recharge forms branching caves with tributaries that join downstream as higher-order passages. Maze caves form where (1) steep gradients and great undersaturation allow many alternate paths to enlarge at similar rates or (2) discharge or renewal of undersaturation is uniform along many alternate routes. Flood water can form angular networks in fractured rock, anastomotic mazes along low-angle partings, or spongework where intergranular pores are dominant. Diffuse recharge also forms networks and spongework, often aided by mixing of chemically different waters. Ramiform caves, with sequential outward branches, are formed mainly by rising thermal or H2S-rich water. Dissolution rates in cooling water increase with discharge, CO2 content, temperature, and thermal gradient, but only at thermal gradients of more than 0.01-degrees-C/m can normal ground-water CO2 form caves without the aid of hypogenic acids or mixing. Artesian flow has no inherent tendency to form maze caves. Geologic structure and stratigraphy influence cave orientation and extent, but alone they do not determine branch-work versus maze character

Speleogenesis in gypsum, 2000, Klimchouk A.
The main differences between the solutional properties of gypsum and those of calcite lie in the much higher solubility of gypsum, and in dissolution kinetics of gypsum which is solely diffusion controlled. Unlike calcite, no change of kinetic order occurs with an increase in concentration. Initiation of long lateral flow paths through gypsum is virtually impossible due to the rapid rate of dissolution; no kinetic mechanisms allow slow but uniform dissolutional enlargement throughout the flow paths. Near the surface, fissures are already wide enough for cave development to occur, which is extremely competitive due to rapid dissolution kinetics and the strong dependence of enlargement rates on flow velocity and discharge. Thus caves in gypsum in exposed settings are mainly linear or crudely branching, rapidly adjusting to the contemporary geomorphic setting and available recharge. Vertical pipes or pits form in the vadose zone. No deep phreatic development and no artesian development by lateral flow from distant recharge areas can occur. However, cave origin and development does occur in deep-seated confined settings where gypsum beds in stratified sequences are underlain by, or sandwiched between poorly soluble aquifers. Two situations support cave origin in gypsum in deep-seated settings: (1) transverse flow through gypsum between overlying and underlying aquifers, and (2) lateral flow in an insoluble but permeable aquifer underlying a gypsum bed. The former situation generates either maze caves where uniformly distributed fissure networks exist in the gypsum, or discrete voids where the otherwise low-fissured gypsum is disrupted by prominent tectonic fractures. If considerable conduit porosity has been created in a deep-seated setting, it provides ready paths for more intense groundwater circulation and further cave development when the gypsum is uplifted into the shallow subsurface. Thick and low-fissured sulfate strata can survive burial with no speleogenesis at all where surrounded by poorly permeable beds. When exposed to the surface, such gypsum deposits undergo speleogenetic development with no inherited features, presenting the pure line of open karst.

Speleogenesis: Evolution of Karst Aquifers., 2000,
The aim of this book is to present advances made in recent decades in our understanding of the formation of dissolutional caves, and to illustrate the role of cave genetic ( speleogenetic ) processes in the development of karst aquifers. From the perspective of hydrogeology, karst ground water flow is a distinct kind of fluid circulation system, one that is capable of self-organization and self-development due to its capacity to dissolve significant amounts of the host rock and transport them out of the system. Fluid circulation in soluble rocks becomes more efficiently organized by creating, enlarging and modifying patterns of cave conduits, the process of speleogenesis. We can assert that karst ground water flow is a function of speleogenesis and vice versa . The advances in cave science are poorly appreciated in what may be termed ?mainstream hydrogeology?, which retains a child-like faith in flow models developed in the sand box. Many karst students also will not be aware of all emerging concepts of cave origin because discussions of them are scattered through journals and books in different disciplines and languages, including publications with small circulation. An understanding of principles of speleogenesis and its most important controls is indispensable for proper comprehension of the evolution of the karst system in general and of karst aquifers in particular. We hope this book will be useful for both karst and cave scientists, and for general hydrogeologists dealing with karst terranes. This book is a pioneer attempt by an international group of cave scientists to summarize modern knowledge about cave origin in various settings, and to examine the variety of approaches that have been adopted. Selected contributions from 44 authors in 15 nations are combined in an integrated volume, prepared between 1994 and 1998 as an initiative of the Commission of Karst Hydrogeology and Speleogenesis, International Speleological Union. Despite a desire to produce an integrated book, rather than a mere collection of papers, the editors' policy has not been directed toward unifying all views. Along with some well-established theories and approaches, the book contains new concepts and ideas emerging in recent years. We hope that this approach will stimulate further development and exchange of ideas in cave studies and karst hydrogeology. Following this Introduction, (Part 1), the book is organized in seven different parts, each with sub-chapters. Part 2 gives a history of speleogenetic studies, tracing the development of the most important ideas from previous centuries (Shaw, Chapter 2.1) through the early modern period in the first half of this century (Lowe, Chapter 2.2) to the threshold of modern times (W.White, Chapter 2.3). The present state of the art is best illustrated by the entire content of this book. Part 3 overviews the principal geologic and hydrogeologic variables that either control or significantly influence the differing styles of cave development that are found. In Chapter 3.1 Klimchouk and Ford introduce an evolutionary approach to the typology of karst settings, which is a taken as a base line for the book. Extrinsic factors and intrinsic mechanisms of cave development change regularly and substantially during the general cycle of geological evolution of a soluble rock and , more specifically, within the hydrogeologic cycle. The evolutionary typology of karst presented in this chapter considers the entire life cycle of a soluble formation, from deposition (syngenetic karst) through deep burial, to exposure and denudation. It helps to differentiate between karst types which may concurrently represent different stages of karst development, and is also a means of adequately classifying speleogenetic settings. The different types of karst are marked by characteristic associations of the structural prerequisites for groundwater flow and speleogenesis, flow regime, recharge mode and recharge/discharge configurations, groundwater chemistry and degree of inheritance from earlier conditions. Consequently, these associations make a convenient basis to view both the factors that control cave genesis and the particular types of caves. Lithological and structural controls of speleogenesis are reviewed in general terms in Chapters 3.2 (Klimchouk and Ford). Lowe in Chapter 3.3 discusses the role of stratigraphic elements and the speleo-inception concept. Palmer in Chapter 3.4 overviews the hydrogeologic controls of cave patterns and demonstrates that hydrogeologic factors, the recharge mode and type of flow in particular, impose the most powerful controls on the formation of the gross geometry of cave systems. Hence, analysis of cave patterns is especially useful in the reconstruction of environments from paleokarst and in the prediction and interpretation of groundwater flow patterns and contaminant migration. Any opportunity to relate cave patterns to the nature of their host aquifers will assist in these applied studies as well. Osborne (Chapter 3.7) examines the significance of paleokarst in speleogenesis. More specific issues are treated by Klimchouk (The nature of epikarst and its role in vadose speleogenesis, Chapter 3.5) and by V.Dublyansky and Y.Dublyansky (The role of condensation processes, Chapter 3.6). Part 4 outlines the fundamental physics and chemistry of the speleogenetic processes (Chapter 4.1) and presents a variety of different approaches to modeling cave conduit development (Chapter 4.2). In Chapter 4.1, the chemical reactions during the dissolution of the common soluble minerals, calcite, gypsum, salt and quartz, are discussed with the basic physical and chemical mechanisms that determine their dissolution rates. As limestone is the most common karst rock and its dissolution is the most complex in many respects, it receives the greatest attention. Dreybrodt (Section 4.1.1) and Dreybrodt and Eisenlohr (Section 4.1.2) provide advanced discussion and report the most recent experimental data, which are used to obtain realistic dissolution rates for a variety of hydrogeologic conditions and as input for modeling the evolution of conduits. Although direct comparisons between theoretical or analytical dissolution rates and those derived from field measurements is difficult, a very useful comparison is provided by W.White (Section 4.1.3). The bulk removal of carbonate rock from karst drainage basins can be evaluated either by direct measurement of rock surface retreat or by mass balance within known drainage basins. All of these approaches make sense and give roughly accurate results that are consistent with theoretical expectations. It is well recognized today that the earliest, incipient, phases of speleogenesis are crucial in building up the pattern of conduits that evolve into explorable cave systems. It is difficult to establish the major controls on these initial stages by purely analytical or intuitive methods, so that modeling becomes particularly important. Various approaches are presented in Chapter 4.2. Ford, Ewers and Lauritzen present the results of systematic study of the propagation of conduits between input and output points in an anisotropic fissure, using a variety of hardware and software models, in series representing the "single input", "multiple inputs in one rank", and "multiple inputs in multiple ranks" cases (Section 4.2.1). The results indicate important details of the competitive development of proto-conduits and help to explain branching cave patterns. In the competition between inputs, some principal tubes in near ranks first link ("breakthrough") to an output boundary. This re-orients the flowfields of failed nearby competitors, which then extend to join the principal via their closest secondaries. The process extends outwards and to the rear, linking up all inputs in a "cascading system". The exploding growth of computer capability during the last two decades has greatly enhanced possibilities for digital modeling of early conduit development. Investigating the growth of a single conduit is a logical first step in understanding the evolution of caves, realized here by Dreybrodt and Gabrov?ek in the form of a simple mathematical model (Section 4.2.2) and by Palmer by numerical finite-difference modeling (Section 4.2.3). The models show that positive feedback loops operate; widening a fracture causes increasing flow through it, therefore dissolution rates increase along it and so on, until finally a dramatic increase of flow rates permits a dramatic enhancement of the widening. This breakthrough event terminates the initial stage of conduit evolution. From then on the water is able to pass through the entire conduit while maintaining sufficient undersaturation to preserve low-order kinetics, so the growth rate is very rapid, at least from a geological standpoint -- usually about 0.001-0.1 cm/yr. The initiation ("breakthrough") time depends critically on the length and the initial width of the fracture and, for the majority of realistic cases, it covers a time range from a few thousand years to ten million years in limestones. The modeling results give a clear explanation of the operation of selectivity in cave genesis. In a typical unconfined karst aquifer there is a great range of enlargement rates along the competing flow routes, and only a few conduits will grow to enterable size. The modeling also provides one starting point (others are discussed in Chapter 5.2) to explain uniform maze patterns, which will be favored by enlargement of all openings at comparable rates where the discharge/length ratio is great enough. Single-conduit modeling has the virtue of revealing how the cave-forming variables relate to each other in the simplest possible way. Although it is more difficult to extend this approach to two dimensions, many have done so (e.g. Groves & Howard, 1994; Howard & Groves, 1995; in this volume ? Ford, Ewers and Lauritzen, Section 4.2.1; Dreybrodt and Siemers, Section 4.2.4, and Sauter and Liedl, Section 4.2.5). The modeling performed by Dreybrodt and Siemers shows that the main principles of breakthrough derived from one-dimensional models remain valid. The evolution of karst aquifers has been modeled for a variety of different geological settings, including also variation in lithology with respect to the dissolution kinetics. Sauter and Liedl simulate the development of conduits at a catchment scale for fissured carbonate rocks with rather large initial openings (about 1 mm). The approach is based upon hydraulic coupling of a pipe network to matrix continuum in order to represent the well-known duality of karst aquifer flow systems. It is also shown how understanding of the genesis of karst aquifers and modeling of their development can assist in characterization of the conduit system, which dominates flow and transport in karst aquifers. An important point that has emerged from cave studies of the last three decades is that no single speleogenetic model applies to all geologic and hydrologic settings. Given that settings may also change systematically during the evolutionary geological cycles outlined above (Chapter 3.1), an evolutionary approach is called for. This is attempted in Part 5, which is organized to give extended accounts of speleogenesis in the three most important settings that we recognize: coastal and oceanic (Chapter 5.1), deep-seated and confined (Chapter 5.2) and unconfined (Chapter 5.3). Each Chapter begins with a review of modern ideas on cave development in the setting, followed by representative case studies. The latter include new accounts of some "classic" caves as well as descriptions of other, little-known cave systems and areas. Readers may determine for themselves how well the real field examples fit the general models presented in the introductory sections. Mylroie and Carew in Chapter 5.1 summarize specific features of cave and karst development in young rocks in coastal and island settings that result from the chemical interactions between fresh and salt waters, and the effects of fluctuating sea level during the Quaternary. The case studies include a review of syngenetic karst in coastal dune limestones, Australia (S.White, 5.1.1) and an example of speleogenesis on tectonically active carbonate islands (Gunn and Lowe, 5.1.2). Klimchouk in Chapter 5.2 reviews conditions and mechanisms of speleogenesis in deep-seated and confined settings, one of the most controversial but exciting topics in modern cave research. Conventional karst/speleogenetic theories are concerned chiefly with shallow, unconfined geologic settings, supposing that the karstification found there is intimately related to surface conditions of input and output, with the dissolution being driven by downward meteoric water recharge. The possibility of hypogenic karstification in deeper environments has been neglected for a long time, and the quite numerous instances of karst features found at significant depths have usually been interpreted as buried paleokarst. However, the last decade has seen a growing recognition of the variety and importance of hypogene dissolution processes and of speleogenesis under confined settings which often precedes unconfined development (Hill, 1987, 1995; Klimchouk, 1994, 1996, 1997; Lowe, 1992; Lowe & Gunn, 1995; Mazzullo & Harris, 1991, 1992; Palmer, 1991, 1995; Smart & Whitaker, 1991; Worthington, 1991, 1994; Worthington & Ford, 1995). Confined (artesian) settings were commonly ignored as sites for cave origin because the classic concept of artesian flow implies long lateral travel distances for groundwater within a soluble unit, resulting in a low capacity to generate caves in the confined area. However, the recognition of non-classical features in artesian flow, namely the occurrence of cross-formation hydraulic communication within artesian basins, the concepts of transverse speleogenesis and of the inversion of hydrogeologic function of beds in a sequence, allows for a revision of the theory of artesian speleogenesis and of views on the origin of many caves. It is proposed that artesian speleogenesis is immensely important to speleo-inception and also accounts for the development of some of the largest known caves in the world. Typical conditions of recharge, the flow pattern through the soluble rocks, and groundwater aggressiveness favor uniform, rather than competing, development of conduits, resulting in maze caves where the structural prerequisites exist. Cross-formational flow favors a variety of dissolution mechanisms that commonly involve mixing. Hydrogeochemical mechanisms of speleogenesis are particularly diverse and potent where carbonate and sulfate beds alternate and within or adjacent to hydrocarbon-bearing sedimentary basins. Hypogene speleogenesis occurs in rocks of varied lithology and can involve a variety of dissolution mechanisms that operate under different physical constraints but create similar cave features. Case studies include the great gypsum mazes of the Western Ukraine (Klimchouk, Section 5.2.1), great maze caves in limestones in Black Hills, South Dakota (Palmer, Section 5.2.2) and Siberia (Filippov, Section 5.2.3), karstification in the Redwall aquifer, Arizona (Huntoon, Section 5.2.4), hydrothermal caves in Hungary (Y.Dublyansky, Section 5.2.6), and sulfuric acid speleogenesis (Lowe, Bottrell and Gunn, Section 5.2.7, and Hill, Section 5.2.8). Y.Dublyansky summarizes the peculiar features of hydrothermal speleogenesis (Section 5.2.5), and V.Dublyansky describes an outstanding example of a hydrothermal cavity, in fact the largest ever recorded by volume, in the Rhodope Mountains (Section 5.2.9). Recognition of the scale and importance of deep-seated speleogenesis and of the hydraulic continuity and cross-formational communications between aquifers in artesian basins is indispensable for the correct interpretation of evolution of karst aquifers, speleogenetic processes and associated phenomena, regional karst water-resource evaluations, and the genesis of certain karst-related mineral deposits. These and other theoretical and practical implications still have to be developed and evaluated, which offers a wide field for further research efforts. Ford in Chapter 5.3 reviews theory of speleogenesis that occurs where normal meteoric waters sink underground through the epikarst or dolines and stream sinks, etc. and circulate in the limestone or other soluble rocks without any major artesian confinement. These are termed common caves (Ford & Williams, 1989) because they probably account for 90% or more of the explored and mapped dissolutional caves that are longer than a few hundred meters. This estimate reflects the bias in exploration; caves formed in unconfined settings and genetically related to surface recharge are the most readily accessible and hence form the bulk of documented caves. Common caves display chiefly the branchwork forms where the dissolutional conduits occupy only a tiny proportion of the total length or area of penetrable fissures that is available to the groundwaters. The rules that govern the selection of the successful linkages that will be enlarged into the branchwork pattern are supported in the models presented in Chapter 4.2. In the long section caves may be divided into deep phreatic, multi-loop, mixed loop and water table, and ideal water table types, with drawdown vadose caves or invasion vadose caves above them. Many large systems display a mixture of the types. The concepts of plan pattern construction, phreatic, water table or vadose state, and multi-phase development of common caves are illustrated in the case studies that follow the introduction. They are organized broadly to begin with examples of comparatively simple deep phreatic and multi-loop systems (El Abra, Mexico, Ford, Section 5.3.1 and Castleguard Cave, Canada, Ford, Lauritzen and Worthington, Section 5.3.2), proceeding to large and complex multi-phase systems such as the North of Thun System, Switzerland (Jeannin, Bitterly and Hauselmann, Section 5.3.3) and Mammoth Cave, Kentucky (Palmer, Section 5.3.8), to representatives of mixed vadose and phreatic development in mountainous regions (the Alps, Audra, Section 5.3.4; the Pyrenees, Fernandez, Calaforra and Rossi, Section 5.3.5; Mexico, Hose, Section 5.3.6) and where there is strong lithologic or structural control (Folded Appalachians, W.White, Section 5.3.7; gypsum caves in the South of Spain, Calaforra and Pulido-Bosch, Section 5.3.10). Two special topics are considered by W.White in Section 5.3.9 (Speleogenesis of vertical shafts in the eastern US) and Palmer (Maze origin by diffuse recharge through overlying formation). The set concludes with two instances of nearly ideal water table cave development (in Belize and Hungary, Ford, Section 5.3.12), and a review of the latest models of speleogenesis from the region where modern karst studies in the West began, the Classical Karst of Slovenia and Trieste (?u?ter?ic, Section 5.3.13). In Parts 2-5 attention is directed primarily on how the gross geometry of a cave system is established. Part 6 switches focus to the forms at meso- and micro- scales, which can be created during enlargement of the cave. Lauritzen and Lundberg in Chapter 6.1 summarize the great variety of erosional forms ( speleogenetic facies ) that can be created by a wide range of speleogenetic agents operating in the phreatic or vadose zones. Some forms of cave passages have been subject to intensive research and may be interpreted by means of simple physical and chemical principles, but many others are polygenetic and hence difficult to decipher with certainty. However, in addition to the analysis of cave patterns (see Chapter 3.4), each morphological element is a potential tool that can aid our inferences on the origin of caves and on major characteristics of respective past hydrogeological settings. In Chapter 6.2 E.White and W.White review breakdown morphology in caves, generalizing that the processes are most active during the enlargement and decay phases of cave development. Early in the process breakdown occurs when the flow regime shifts from pipe-full conditions to open channel conditions (i.e. when the roof first loses buoyant support) and later in the process breakdown becomes part of the overall degradation of the karst system. The chapter addresses the mechanism of breakdown formation, the geological triggers that initiate breakdown, and the role that breakdown plays in the development of caves. As the great majority of both theoretical considerations and case studies in this book deal with speleogenesis in carbonate rocks, it is useful to provide a special forum to examine dissolution cave genesis in other rocks. This is the goal of Part 7. Klimchouk (7.1) provides a review of speleogenesis in gypsum. This appears to be a useful playground for testing the validity and limitations of certain general speleogenetic concepts. Differences in solution kinetics between gypsum and calcite impose some limitations and peculiar features on the early evolution of conduits in gypsum. These peculiarities appear to be an extreme and more obvious illustration of some rules of speleogenetic development devised from conceptual and digital modeling of early conduit growth in limestones. For instance, it is shown (e.g. Palmer, 1984, 1991; Dreybrodt, 1996; see also Chapter 3.4 and Section 4.2.2) that initiation of early, narrow and long pathways does not seem feasible under linear dissolution rate laws (n=1) due to exponential decrease of the dissolution rates. Although the dissolution kinetics of gypsum are not well known close to equilibrium it is generally assumed that they are controlled entirely by diffusion and therefore linear. If dissolution of gypsum is solely diffusion-controlled, with no change in the kinetic order, conduit initiation could not occur in phreatic settings or by lateral flow through gypsum from distant recharge areas in artesian settings. Hence, the fact that maze caves are common in gypsum in artesian conditions (see Section 5.2.1) gives strong support to a general model of "transverse" artesian speleogenesis where gypsum beds are underlain by, or sandwiched between, insoluble or low-solubility aquifers (Chapter 5.2), and suggests that it may be applicable to cave development in carbonates. In unconfined settings, speleogenesis in gypsum occurs along fissures wide enough to support undersaturated flow throughout their length. Linear or crudely branching caves overwhelmingly predominate, which rapidly adjust to the contemporary geomorphic setting and to the maximum available recharge. Also, if considerable conduit porosity has been created in deep-seated settings, it provides ready paths for more intense groundwater circulation and further cave development when uplift brings the gypsum into the shallow subsurface. Speleogenesis in salt, reviewed in general and exemplified by the Monte Sedom case in Israel (Frumkin, Chapter 7.2), has been documented only in open, unconfined settings, where it provides a model for simple vadose cave development. Chapter 7.3 deals with speleogenesis in quartzites, illustrated by case studies from southeastern Minas Gerais, Brasil (Correa Neto, 7.3.1) and South Africa (Martini, 7.3.2). The process involves initial chemical weathering of the quartzite to create zones of friable rocks (sanding, or arenisation) which then are removed by piping, with further conduit enlargement due to mechanical erosion by flowing water. Part 8 combines the theoretical with some applied aspects of speleogenetic studies. Worthington, Ford and Beddows (8.1) show the important implications of what might be termed "speleogenetic wisdom" when studying ground water behaviour in karst. They examine some standard hydrogeological concepts in the light of knowledge of caves and their patterns, considering a range of case studies to identify the characteristic enhancement of porosity and permeability due to speleogenesis that occurs in carbonate rocks. The chapter focuses on unconfined carbonate aquifers as these are the most studied from the speleological perspective and most important for water supplies. Four aquifers, differing in rock type, recharge type (allogenic and autogenic), and age (Paleozoic, Mesozoic and Cenozoic), are described in detail to demonstrate the extent of dissolutional enhancement of porosity and permeability. It is shown that all four cases are similar in hydraulic function, despite the fact that some of them were previously characterized as different end members of a "karst ? non-karst" spectrum. Enhancement of porosity by dissolution is relatively minor: enhancement of permeability is considerable because dissolution has created dendritic networks of channels able to convey 94% or more of all flow in the aquifer, with fractures providing a small proportion and the matrix a negligible amount. These conclusions may be viewed as a warning to hydrogeologists working in carbonate terranes: probably the majority of unconfined aquifers function in a similar manner. Sampling is a major problem in their analysis because boreholes (the conventional exploration tool in hydrogeology) are unlikely to intersect the major channels that are conveying most of the flow and any contaminants in it. It is estimated, using examples of comprehensively mapped caves, that the probability of a borehole intersecting a conduit ranges from 1 in 50 to 1 in 1000 or more. Boreholes simply cannot be relied upon to detect the presence of caves or to ?characterise? the hydrologic functioning of cavernous aquifers. Wherever comprehensive evidence has been collected in unconfined carbonate aquifers (cave mapping plus boreholes plus lab analysis of core samples) it suggests that dissolution inexorably results in a similar structure, with channel networks providing most of the permeability of the aquifer, yet occupying a very minor fraction of its volume (Worthington, Ford and Beddows). Lowe (Chapter 8.2) focuses on developments in understanding the vital role played by karstic porosity, (broadly viewed as being the product of speleogenesis), in the migration of mineralizing fluids (or hydrocarbons) and in their deposition (or storage), and comments on the potential role of new speleogenetic concepts in developing greater understanding in the future. Although some early workers were clearly aware of actual evidence for some kind of relationship, and others noted its theoretical likelihood, it has been ignored by many until relatively recent times. This shortfall has gradually been redressed; new understanding of the extent and variety of karst processes is ensuring that new relationships are being recognized and new interpretations and models are being derived. The chapter does not pretend to give a comprehensive account of the topic but clearly demonstrates the wide applicability of speleogenetic knowledge to issues in economic geology. In Chapter 8.3 Aley provides an overview of the water and land-use problems that occur in areas with conduit aquifers. He stresses that sound land management must be premised on an understanding that karst is a three-dimensional landscape where the surface and subsurface are intimately and integrally connected. Failure to recognize that activity at the surface affects the subsurface, and the converse, has long been the root cause of many of the problems of water and land use in karst regions. Karst areas have unique natural resource problems, whose management can have major economic consequences. Although there is an extensive literature on the nature of particular problems, resource protection and hazard minimization strategies in karst, it rarely displays an advanced understanding of the processes of the conduit formation and their characteristics yet these will always be involved. This book does not pretend to be a definitive text on speleogenesis. However, it is hoped that readers will find it to be a valuable reference source, that it will stimulate new ideas and approaches to develop and resolve some of the remaining problems, and that it will promote an appreciation of the importance of speleogenetic studies in karst hydrogeology and applied environmental sciences. Acknowledgements: We sincerely thank all contributors for their willing cooperation in the long and difficult process of preparing this book, for their participation in developing its logic and methodology and their cheerful response to numerous requests. We thank all colleagues who discussed the work with us and encouraged it in many ways, even though not contributing to its content as authors. We are particularly grateful to Margaret Palmer for invaluable help in editing the English in many contributions, to Nataly Yablokova for her help in performing many technical tasks and to Elizabeth White who prepared comprehensive index. Our thanks are due to Dr. David Drew, Dr. Philip LaMoreaux, Dr. George Moore and Prof. Marian Pulina for reviewing the manuscript and producing constructive notes and comments on improvement of the final product. The organizational costs and correspondence related to the preparation of the book were partially sponsored by the National Speleological Society, the publisher. We thank David McClurg, the Chair of the NSS Special Publication Committee, for his extensive technical and organizational support in the preparation and publishing processes.

Toward a better understanding of fissure growth in karst formations: Investigations from genesis to maturation and the influence of fracture-matrix interactions., 2002, Cheung, Wendy Wai Wan

There has been interest in quantitative modeling of early karstification with the objectives of estimating time-scales of conduit growth and understanding the nature of cave patterns. In particular, the initiation phase has been studied in great detail because it is the slowest phase in the development of caverns. In this study aperture variability in a two-dimensional framework and fracture matrix interaction are studied to better understand their role in time estimations of aperture growth. The initial phase of karst development is studied from its nascent stage as a fissure into the early stages of turbulence. In uniform fissures in rapidly dissolving minerals, the concentration reaches the solubility limit within a short distance along the flow path. However, the variability in the aperture field inherently provides instabilities to the system and growth is propagated along these perturbations. Flow is focused into preferential channels which are enlarged at a faster rate than surrounding regions of slow flow. As a result, a positive feedback mechanism takes place and creates growth in a highly selective manner. Only in large domains (>25 correlation lengths), can the instabilities create competition for flow at the solution front as well and lead to significant branching. It is this branching which creates the non-monotonic behavior in breakthrough times (defined as the point in which turbulent flow is first encountered). It has been observed that the non-monotonic behavior is scale dependent. Smaller domains do not exhibit this behavior because there are only a few correlation lengths between
the fingertip and the lateral domain boundaries. Aperture variability significantly impacts dissolution patterns in a two-dimensional framework. While aperture variability speeds up growth, the inclusion of the porous bedrock can inhibit growth. The porous matrix serving as a large low - conductive reservoir can significantly influence the development of the fracture by slowing down dissolution growth through matrix diffusion. In a one dimensional model, this issue is further explored. Although the focus of the study is on modeling of early karstification, there are many common themes between this problem and other reactive transport problems that this model can be made suitable for exploring.


, 2008, Jones O. S. , Lyon E. H. , And Macalady J. L.
Su lfid ic cave walls host abundant, rapid ly-growing micro bia l communities that display a variety o f mo rphologies previously described for verrn iculations. Here we present molecular, microscopic, isotopic, and geochemical data describing the geomicrobiology o f these biovennic ulations from the Frasassi cave system, Italy. The biove rm iculations are compo sed of densely packed prokaryo tic and funga l cells in a mineral-organ ic matrix co ntaining 5 to 25% o rganic carbon. The carbon and nitrogen isoto pe compositions o f the biovermiculations (ti 13e = - 35 to - 43%0, and til 5N = 4 to - 270/00. respectively) indicate that with in sulfidic zo nes, the o rga nic matter o rigina tes from chemolithotrophic bacterial primary productivity. Based on 165 rRNA gene cloning (n=67). the bioverrn ... iculation communitv is extrernelv diverse, incl uding 48 . ~ . ... representative phylotypes (>98% identity) from at least 15 major bacterial lineages. Important lineages include the Betaproteobacteria (1 9.5% of clones). Gammaproteobacteria (1 8%). Acidobacteria (1 0.5%). Nitrospirae (7.5%). and Planctomyces (7.5%). The most abundant phylotype, comprising over 100/0 of the 16S rRNA gene sequences. groups in an unnamed clade within the Gammaproteobacteria. Based on phylogenetic analysis, we have identified potential sulfur- and nitrite-oxidizing bacte ria. as well as both auto- and heterotrophic members of the biovermiculation community. Additionally. many of the clones a re representatives of deeply branching bacterial lineages with no cultivated representatives. The geochemistry and microbial composition of the biovermicula tions suggest that they play a role in acid production and carbonate disso lution. thereby contributing to cave formation.

Geomicrobiology of biovermiculations from the Frasassi Cave System, Italy, 2008, D. S. Jones, E. H. Lyon, And J. L. Macalady

Sulfidic cave walls host abundant, rapidly-growing microbial communities that display a variety of morphologies previously described for vermiculations. Here we present molecular, microscopic, isotopic, and geochemical data describing the geomicrobiology of these biovermiculations from the Frasassi cave system, Italy. The biovermiculations are composed of densely packed prokaryotic and fungal cells in a mineral-organic matrix containing 5 to 25% organic carbon. The carbon and nitrogen isotope compositions of the biovermiculations (d13C 5 235 to 243%, and d15N 5 4 to 227%, respectively) indicate that within sulfidic zones, the organic matter originates from chemolithotrophic bacterial primary productivity. Based on 16S rRNA gene cloning (n567), the biovermiculation community is extremely diverse, including 48 representative phylotypes (.98% identity) from at least 15 major bacterial lineages. Important lineages include the Betaproteobacteria (19.5% of clones), Gammaproteobacteria (18%), Acidobacteria (10.5%), Nitrospirae (7.5%), and Planctomyces (7.5%). The most abundant phylotype, comprising over 10% of the 16S rRNA gene sequences, groups in an unnamed clade within the Gammaproteobacteria. Based on phylogenetic analysis, we have identified potential sulfur- and nitrite-oxidizing bacteria, as well as both auto- and heterotrophic members of the biovermiculation community. Additionally, many of the clones are representatives of deeply branching bacterial lineages with no cultivated representatives. The geochemistry and microbial composition of the biovermiculations suggest that they play a role in acid production and carbonate dissolution, thereby contributing to cave formation.


Structural and host rock controls on the distribution, morphology and mineralogy of speleothems in the Castanar Cave (Spain), 2011, Alonsozarza A. M. , Martinperez A. , Martingarcia R. , Gilpena I. , Melendez A. , Martinezflores E. , Hellstrom J. , Munozbarco P.

The Castanar Cave (central western Spain) formed in mixed carbonate-siliciclastic rocks of Neoproterozoic age. The host rock is finely bedded and shows a complex network of folds and fractures, with a prevalent N150E strike. This structure controlled the development and the maze pattern of the cave, as well as its main water routes. The cave formed more than 350 ka ago as the result of both the dissolution of interbedded carbonates and weathering of siliciclastic beds, which also promoted collapse of the overlying host rock. At present it is a totally vadose hypergenic cave, but its initial development could have been phreatic. The cave's speleothems vary widely in their morphology and mineralogy. In general, massive speleothems (stalactites, stalagmites, flowstones, etc.) are associated with the main fractures of the cave and bedding planes. These discontinuities offer a fairly continuous water supply. Other branching, fibrous, mostly aragonite speleothems, commonly occur in the steeper cave walls and were produced by capillary seepage or drip water. Detailed petrographical and isotope analyses indicate that both aragonite and calcite precipitated as primary minerals in the cave waters. Primary calcite precipitated in waters of low magnesium content, whereas aragonite precipitated from magnesium-rich waters. Differences in isotope values for calcite (-5.2‰ for ?18O and -9.6‰ for ?13C) and aragonite (?18O of -4.5‰ and ?13C of -3.5‰ ) can be explained by the fact that the more unstable mineral (aragonite) tends to incorporate the heavier C isotope to stabilize its structure or that aragonite precipitates in heavier waters. Changes in the water supply and the chemistry and instability of aragonite caused: (1) inversion of aragonite to calcite, which led to the transformation of aragonite needles into coarse calcite mosaics, (2) micritization, which appears as films or crusts of powdery, opaque calcite, and (3) dissolution. Dolomite, huntite, magnesite and sepiolite were identified within moonmilk deposits and crusts. Moonmilk occurs as a soft, white powder deposit on different types of speleothems, but mostly on aragonite formations. Huntite and magnesite formed as primary minerals, whereas dolomite arose via the replacement of both huntite and aragonite. Owing to its variety of speleothems and location in an area of scarce karstic features, the Castanar Cave was declared a Natural Monument in 1997 and is presently the target of a protection and research programme. Although the main products formed in the cave and their processes are relatively well known, further radiometric data are needed to better constrain the timing of these processes. For example, it is difficult to understand why some aragonite speleothems around 350 ka old have not yet given way to calcite, which indicates that the environmental setting of the cave is still not fully understood. 


CLASSIFICACI MORFOGENTICA DE LES CAVITATS CRSTIQUES DE LES ILLES BALEARS, 2011, Gins J. , Gins A.

A typological classification of the caves and shafts in the Balearic Islands is presented in this paper, with the aim of update the knowledge on the morphogenetics of endokarst in the archipelago and incorporating the explorations and discoveries carried out during the last decades. After a brief overview about the classificatory attempts of subterranean cavities in our islands, a systematization on the basis of hydrogeological and speleogenetic criteria is proposed, establishing four main categories as follows: 1) vertical shafts in the vadose zone, 2) caves of the vadose zone, 3) inland phreatic caves, and 4) caves of the littoral fringe. Within these categories, up to ten cavity types corresponding to well-differentiated genetic modalities are distinguished, together with five additional subtypes that designate specific morphological singularities branching from a given typology. The geographical distribution of the diverse cave types in the different karst regions of the archipelago is analyzed, being worth to mention the richness and variety of subterranean forms in the mountain karst of Serra de Tramuntana, in Mallorca island, as well as the abundant and variegated littoral caves occurring in the Upper Miocene postorogenic carbonates of Mallorca, Menorca and Formentera islands. The hypogene speleogenetic processes recently documented in the karst areas of southern Mallorca contribute to supply new insights on the high diversity of subterranean environments represented in the Balearic archipelago


Development of a deep karst system within a transpressional structure of the Dolomites in north-east Italy, 2013, Sauro Francesco, Zampieri Dario, Filipponi Marco

The Piani Eterni karst system is one of the longest and deepest caves of Italy situated in the southern sector of the Dolomiti mountain range. The area where the cave was formed displays peculiar structural settings confined in a tectonic transpressive corridor between two regional thrusts (Belluno and Valsugana). During Miocene uplift of the range the inheritance of Mesozoic structures led to the formation of a deep and wide upward-branching flower (or palm tree) structure cutting the carbonate sequence and exposing the surrounding surface to karst processes after erosion. The relative lowering of the hydrologic base level, due both to the uplift of the area and then to the carving of deep glacial valleys in the Quaternary, allowed the formation of paleo-phreatic conduits at subsequently deeper levels, interconnected by vadose shafts and canyons.

This work gives a detailed tectonic interpretation of the transpressive structure and picks out the tectonic features most favorable to the karst development. A detailed statistical analysis of the distribution and orientation of the karst conduits was performed using 31 km of 3D surveys showing that the development of the cave was strictly guided by a few favorable surfaces of stratigraphic and tectonic origin. These features are known in the literature as inception horizons and tectonic inception features, respectively. Cave levels are usually related to lithologic favorable conditions associated with standings of the paleo-water table. Here we suggest that some tectonic surface geometries could have led to the opening of voids in the active tectonic phase leading to the formation of the original proto-conduit network. Different types of tectonic inception features identified in the cave were described in terms of geometry and kinematics. Tensional fractures, as well as fault plane undulations and flexural slip surfaces between beds, are described as the most favorable tectonic surfaces for the development of the conduits. Finally, we discuss why transpressional settings and related flower structures in soluble rocks can enhance the karst process allowing the formation of huge and deep karst systems.


Influence of conduit network geometry on solute transport in karst aquifers with a permeable matrix, 2013, Ronayne, M. J.

In karst aquifers with significant matrix permeability, water and solutes are exchanged between the conduits and carbonate matrix. Transport through the matrix increases thes pread of solutes and increases travel times. This study numerically evaluates advective solute transport in synthetic karst systems that contain 3D branching conduit networks. Particle tracking is performed to analyze the spatial and temporal transport history of solute that arrives at the conduit outlet. Three measures of transport connectivity are used to quantify the solute migration behavior: the skew ness of the particle arrival time distribution, the normalized fifth percentile of arrival times, and the fraction of the total travel time that occurs within conduits. All three of these metrics capture the influence of conduit network geometry on solute transport. A more tortuous network leads to enhanced conduit-matrix mixing, which reduces the transport connectivity and yields a broader distribution of solute arrival times. These results demonstrate that the conduit network geometry is an important control on solute transport in karst systems with a permeable matrix.


Results 1 to 11 of 11
You probably didn't submit anything to search for