Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That tectonic valley is a valley formed by tectonic forces [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for cave monitoring (Keyword) returned 13 results for the whole karstbase:
MODERN TREND IN CAVE MONITORING, 2002, Cigna, Arrigo A.

The evolution of cave monitoring since 19th century is described. The advantage of the development of theories was the possibility to obtain comparable results and forecast the evolution of a cave climate before irreversible modifications take place. The most important parameters to be monitored are indicated. In recent years both important technological improvements have been obtained and the relative importance of each parameter has been reviewed. Kartchner Caverns, Arizona, USA, was opened to the public in November 1999. Some preliminary studies have been performed. Arizona Conservation Project, Inc. (ACPI) established 22 monitoring stations. An evaluation of the impact assessment was obtained. The second case concerns Cango Cave. A simple monitoring network has been installed in September 2000 to be operated for one year. It consists in about 15 rugged data loggers distributed along the cave. Air and water temperature, carbon dioxide concentration, and relative humidity are measured and the values are transferred periodically by a shuttle into a computer outside the cave. A totally automatic monitoring network will be installed in the future after the results of the first simple network are achieved.


CAVE MONITORING PRIORITIES IN CENTRAL AMERICA AND THE CARIBBEAN, 2002, Day Michael, Koenig Susan

Karstlands cover about 300,000 km2 (50%) of the land area of Central America and the Caribbean. The number of caves is probably tens of thousands. Cave monitoring is uncommon throughout Central America and the Caribbean, and is generally accorded a low priority by agencies responsible for environmental management and conservation. Exceptions occur only in some protected areas and in a few commercial caves. Fundamentally, it is not recognized generally that there is a need to monitor caves. Beyond that, monitoring is limited severely by paucity of funding, equipment and qualified personnel. Cave monitoring clearly is warranted, however, because cave environments are inherently fragile and because the karstlands are under increasing developmental pressures. In these contexts, selected inventorying and monitoring programs seem advisable in at least some of the more significant caves. Such monitoring programs might focus on physical environments, historic and prehistoric remains, faunal populations, resource extraction, water quality and human visitation. Equally importantly, surface karst environments need to be monitored too, because degradation at the surface will almost inevitably be mirrored by deterioration in underground conditions.


SIGNIFICANCE AND MONITORING, 2002, Osborne, L. Armstrong R.

An inventory survey followed by a significance assessment process, are essential precursors to any cave monitoring program. Monitoring must not be seen as an end in itself, but as part of an integrated, significance-based management process. It is essential to know what is significant, the conditions necessary to maintain its significance and that the condition and integrity of significant elements are being maintained. For instance, if the significance of a mud deposit is not known, monitoring the condition of speleothems will not stop the mud deposit from being destroyed by high-pressure water cleaning. Similarly, there is little point in monitoring temperature if dust is the main threat to the significant elements. The only way to know that monitoring of environmental conditions is effective is to monitor the ongoing condition and integrity of the significant elements themselves. Without this, lots of interesting data could be collected while the most important features of the cave are lost. Monitoring should therefore address the conditions necessary for the maintenance of significance and the ongoing condition and integrity of significant elements.


MICROCLIMATIC RESEARCH IN THE SLOVAKIAN SHOW CAVES, 2002, Zelinka, Jan

The paper deals with the activities of the Cave Protection Department of the Slovak Caves Administration in the field of speleoclimatic monitoring in the Slovakian show caves since 1996. The monitoring is concentrated on detail survey of basic climatic parameters processes (temperature, relative air humidity, dew point, air velocity, atmospheric pressure etc.) in by now studied show caves during minimally one year. The essence of obtained knowledge is to enhance cave protection in the practice of show caves, better understand the geoecosystems; determine visitors' influence, the period of regeneration and evaluation of possible negative influences. The results of the monitoring are used for determining the carrying capacity of individual caves, limits for visitors, guiding the manageiant and other necessary measures. Presented caves were surveyed by priorities like: World Heritage site, ice caves, natural air mass communication with surface climate, potential threats - all in relation to cave utilization and operation. Technical eqqipment, as well as research methodology are described in detail in the paper.


Environmental Monitoring in the Mechara caves, Southeastern Ethiopia: Implications for Speleothem Palaeoclimate Studies, 2008, Asrat A. , Baker A. , Leng M. J. , Gunn J. And Umer M.
The interpretation of palaeoclimate records in speleothems depends on the understanding of the modern climate of the region, the geology, the hydrology above the caves, and the within-cave climate. Monitoring within-cave climate variability, geochemistry of speleothem-forming drip waters, and associated surface and groundwater, provides a modern baseline for interpretation of speleothem palaeohydrological and palaeoclimate records. Here, we present results of such monitoring of the Mechara caves in southeastern Ethiopia, conducted between 2004 and 2007. Results show nearly constant within-cave climate (temperature and humidity) in all caves, which generally reflects the surface climate. Groundwater and surface water geochemistry is similar across the region (except slight modification by local lithological variations) and modern drip water isotope data fall close to regional Meteoric Water Line, but speleothems further from equilibrium. Holocene and modern speleothems from these caves give high-resolution climate records, implying that the Mechara caves provide a suitable setting for the deposition of annually laminated speleothems that could record surface climate variability in a region where rainfall is sensitive to both the strength of the intertropical convergence zone as well as Indian Monsoon variability.

Palaeoclimate Research in Villars Cave (Dordogne, SW-France)., 2008, Genty D.
Villars Cave is a typical shallow cave from South-West France (45.44N; 0.78E; 175 m asl) that has provided several speleothem palaeoclimatic records such as the millennial scale variability of the Last Glacial period and the Last Deglaciation. Monitoring the Villars cave environment over a 13-year period has helped in the understanding of the stable isotopic speleothem content and in the hydrology. For example, it was demonstrated that most of the calcite CaCO3 carbon comes from the soil CO2, which explains the sensitivity of the ?13C to any vegetation and climatic changes. Drip rate monitoring, carried out under four stalactites from the lower and upper galleries, has shown a well marked seasonality of the seepage water with high flow rates during winter and spring. A time delay of about two months is observed between the water excess (estimated from outside meteorological stations) and the drip rate in the cave. A great heterogeneity in the flow rate amplitude variations and in the annual quantity of water between two nearby stalactites is observed, confirming the complexity of the micro-fissure network system in the unsaturated zone. At a daily scale, the air pressure and drip rates are anti-correlated probably because of pressure stress on the fissure network. Cave air CO2 concentration follows soil CO2 production and is correlated with its ?13C content. Since the beginning of the monitoring, the cave air temperature, in both lower and upper galleries, displays a warming trend of ~+0.4C0.1/10yrs. This might be the consequence of the outside temperature increase that reaches the Villars Cave galleries through thermal wave conduction. Chemistry monitoring over a few years has shown that the seepage water of the lower gallery stations is significantly more concentrated in trace and minor elements (i.e. Sr, Mg, Ba, U) than the upper stations, probably due to the 10-20 m depth difference between these galleries, which implies a different seepage pathway and different water/rock interaction durations. There is also, in the elemental concentration (i.e. [Ca]), a seasonal signal which causes variation in the speleothem growth rates. Modern calcite deposit experiments conducted for several years have permitted the calculation of vertical growth rates, which are extremely high in Villars (i.e. 1.0 to 1.75 mm/ yr). Pollen filter experiments in the cave have demonstrated that most of the pollen grain found in the cave comes from the air and not from the water. The specificity of the Villars Cave records is that the climatic variations were well recorded in the calcite ?13C whereas the ?18O is usually used in such studies. Overall, these results are helpful for the interpretation of speleothem records for palaeoclimatic reconstructions, but more work is needed, especially numerical modelling of the temperature, chemistry and hydrology.

Report of a three-year monitoring programme at Heshang Cave, Central China., 2008, Hu C. , Henderson G. M. , Huang J. , Chen Z. , Johnson K. R.
Heshang Cave is situated in central China (3027N, 11025E; 294 m) in the middle reaches of the Yangtze Valley, a region strongly impacted by the East Asian Monsoon. It contains large annually-laminated Holocene and late Pleistocene stalagmites which capture past monsoon behaviour with seasonal resolution, and could enhance understanding of the amplitude and frequency of monsoon behaviour in different climate states. In this paper, we present results of a 3-year monitoring programme at Heshang. T loggers outside the cave agree closely with T data from nearby meteorological stations. T at the site of growth of the largest recovered stalagmite averages 18C (identical to mean annual T outside the cave) with a seasonal amplitude of 5C (about one fifth of the external cycle). Rainfall measurements from a station 3 km from the cave indicate strong summer monsoon rain in 2004 and 2005, but rather weaker summer rain (by ?30%) in 2006. Drip rate at the monitoring site has a base flow of 14 drips/minute and shows a sharp increase to ?40 drips/minute early in the summer rains of 2004 and 2005, followed by a gradual return to base-flow as the monsoon weakens. This abrupt change presumably represents threshold behaviour in the hydrological system. This threshold is not passed in 2006 and there is no abrupt increase in drip rate, indicating the sensitivity of this site (and presumably of speleothem chemistry in this cave) to monsoon rainfall. Results are also reported from a 10-month deployment of a Stalagmate drip counter, and for CO2 levels in Heshang Cave. Overall, this monitoring work represents an essential dataset for interpretation of the chemistry of drip waters, of carbonates grown on glass slides and, ultimately, of long speleothem records of past climate from Heshang Cave.

Report of a three-year monitoring programme at Heshang Cave, Central China, 2008, Hu C. , Henderson G. M. , Huang J. , Chen Z. , Johnson K. R.

Heshang Cave is situated in central China (30º27’N, 110º25’E; 294 m) in the middle reaches of the Yangtze Valley, a region strongly impacted by the East Asian Monsoon. It contains large annually-laminated Holocene and late Pleistocene stalagmites which capture past monsoon behaviour with seasonal resolution, and could enhance understanding of the amplitude and frequency of monsoon behaviour in different climate states. In this paper, we present results of a 3-year monitoring programme at Heshang. T loggers outside the cave agree closely with T data from nearby meteorological stations. T at the site of growth of the largest recovered stalagmite averages 18ºC (identical to mean annual T outside the cave) with a seasonal amplitude of 5ºC (about one fifth of the external cycle). Rainfall measurements from a station 3 km from the cave indicate strong summer monsoon rain in 2004 and 2005, but rather weaker summer rain (by ≈30%) in 2006. Drip rate at the monitoring site has a base flow of 14 drips/minute and shows a sharp increase to ≈40 drips/minute early in the summer rains of 2004 and 2005, followed by a gradual return to base-flow as the monsoon weakens. This abrupt change presumably represents threshold behaviour in the hydrological system. This threshold is not passed in 2006 and there is no abrupt increase in drip rate, indicating the sensitivity of this site (and presumably of speleothem chemistry in this cave) to monsoon rainfall. Results are also reported from a 10-month deployment of a Stalagmate drip counter, and for CO2 levels in Heshang Cave. Overall, this monitoring work represents an essential dataset for interpretation of the chemistry of drip waters, of carbonates grown on glass slides and, ultimately, of long speleothem records of past climate from Heshang Cave.


Palaeoclimate Research in Villars Cave (Dordogne, SW-France), 2008, Genty, D.

Villars Cave is a typical shallow cave from South-West France (45.44°N; 0.78°E; 175 m asl) that has provided several speleothem palaeoclimatic records such as the millennial scale variability of the Last Glacial period and the Last Deglaciation. Monitoring the Villars cave environment over a 13-year period has helped in the understanding of the stable isotopic speleothem content and in the hydrology. For example, it was demonstrated that most of the calcite CaCO3 carbon comes from the soil CO2, which explains the sensitivity of the δ13C to any vegetation and climatic changes. Drip rate monitoring, carried out under four stalactites from the lower and upper galleries, has shown a well marked seasonality of the seepage water with high flow rates during winter and spring. A time delay of about two months is observed between the water excess (estimated from outside meteorological stations) and the drip rate in the cave. A great heterogeneity in the flow rate amplitude variations and in the annual quantity of water between two nearby stalactites is observed, confirming the complexity of the micro-fissure network system in the unsaturated zone. At a daily scale, the air pressure and drip rates are anti-correlated probably because of pressure stress on the fissure network. Cave air CO2 concentration follows soil CO2 production and is correlated with its δ13C content. Since the beginning of the monitoring, the cave air temperature, in both lower and upper galleries, displays a warming trend of ~+0.4°C±0.1/10yrs. This might be the consequence of the outside temperature increase that reaches the Villars Cave galleries through thermal wave conduction. Chemistry monitoring over a few years has shown that the seepage water of the lower gallery stations is significantly more concentrated in trace and minor elements (i.e. Sr, Mg, Ba, U) than the upper stations, probably due to the 10-20 m depth difference between these galleries, which implies a different seepage pathway and different water/rock interaction durations. There is also, in the elemental concentration (i.e. [Ca]), a seasonal signal which causes variation in the speleothem growth rates. Modern calcite deposit experiments conducted for several years have permitted the calculation of vertical growth rates, which are extremely high in Villars (i.e. 1.0 to 1.75 mm/yr). Pollen filter experiments in the cave have demonstrated that most of the pollen grain found in the cave comes from the air and not from the water. The specificity of the Villars Cave records is that the climatic variations were well recorded in the calcite δ13C whereas the δ18O is usually used in such studies. Overall, these results are helpful for the interpretation of speleothem records for palaeoclimatic reconstructions, but more work is needed, especially numerical modelling of the temperature, chemistry and hydrology.


Environmental Monitoring in the Mechara caves, Southeastern Ethiopia: Implications for Speleothem Palaeoclimate Studies, 2008, Asrat A. , Baker A. , Leng M. J. , Gunn J. , Umer M.

The interpretation of palaeoclimate records in speleothems depends on the understanding of the modern climate of the region, the geology, the hydrology above the caves, and the within-cave climate. Monitoring within-cave climate variability, geochemistry of speleothem-forming drip waters, and associated surface and groundwater, provides a modern baseline for interpretation of speleothem palaeohydrological and palaeoclimate records. Here, we present results of such monitoring of the Mechara caves in southeastern Ethiopia, conducted between 2004 and 2007. Results show nearly constant within-cave climate (temperature and humidity) in all caves, which generally reflects the surface climate. Groundwater and surface water geochemistry is similar across the region (except slight modification by local lithological variations) and modern drip water isotope data fall close to regional Meteoric Water Line, but speleothems further from equilibrium. Holocene and modern speleothems from these caves give high-resolution climate records, implying that the Mechara caves provide a suitable setting for the deposition of annually laminated speleothems that could record surface climate variability in a region where rainfall is sensitive to both the strength of the intertropical convergence zone as well as Indian Monsoon variability.


LETTER: Comments on processes contributing to the isotope composition of 13C and 18O in calcite deposited to speleothems , 2011, Dreybrod, Wolfgang

Isotope compositions of carbon and oxygen in calcite de­posited to stalagmites are regarded as important proxies for paleo-climate. The number of papers reporting such proxies rises rapidly. Additionally cave monitoring is be­ing performed to observe chemical properties of the wa­ter dripping to speleothems, the partial pressure of CO2 in the soil above the cave and in the cave atmosphere, and other parameters outside the cave to relate recent climate conditions to recently deposited calcite.

There are, however, physical and chemical processes independent of climatic conditions, which also contrib­ute to the isotope composition and which can add noise to the climate signal. In this letter I resume these from the current literature to open a more easy access to this problem than available from the current original publi­cations.


Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring. , 2015,

A temperature logger, named “Niphargus”, was developed at the Geological Survey of Belgium to monitor temperature of local natural processes. It has a sensitivity of the order of a few hundredths of degrees on temperature variability in open air, caves, soils and river environment. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with integrated digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy, depending on the sampling rate and environmental conditions. A batch of Niphargus loggers was also compared to a precision thermistor to assess absolute temperature accuracy. Further characterization came from two field case studies in Belgium: monitoring of a mineralized water stream near the town of Spa and air temperature monitoring inside Han-sur-Lesse cave.


Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring. , 2015,

A temperature logger, named “Niphargus”, was developed at the Geological Survey of Belgium to monitor temperature of local natural processes. It has a sensitivity of the order of a few hundredths of degrees on temperature variability in open air, caves, soils and river environment. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with integrated digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy, depending on the sampling rate and environmental conditions. A batch of Niphargus loggers was also compared to a precision thermistor to assess absolute temperature accuracy. Further characterization came from two field case studies in Belgium: monitoring of a mineralized water stream near the town of Spa and air temperature monitoring inside Han-sur-Lesse cave.


Results 1 to 13 of 13
You probably didn't submit anything to search for