Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That annual mean is the mean value taken over all events that have occurred during a year such as precipitation, river stages, watertable levels [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for chemical sediment (Keyword) returned 12 results for the whole karstbase:
Messinian event in the black sea, 1979, Hsu Kenneth J. , Giovanoli Federico,
Three holes were drilled during the 1975 DSDP Leg 42B drilling the Black Sea. A section from Hole 380, at 2107 m water depth on the western edge of the abyssal plain, is 1074 m thick, and provides the most complete stratigraphic section. Dating of the sediments is based upon (1) fossil evidence from pollen, crustaceans, benthic foraminifera, and diatoms, (2) correlation with climatic changes and with unusual isochronous events that have been dated elsewhere, (3) paleomagnetic data, and (4) estimates of sedimentation rate.The history of Black Sea sedimentation recorded by the DSDP cores includes black shale sedimentation during the Late Miocene, followed by periodic chemical sedimentation from Late Miocene to Early Quaternary, and a change to dominantly terrigenous sedimentation from the Middle Quaternary. These hemipelagic and turbiditic sediments were deposited in lacustrine and brackish marine environments. The Messinian sediments, however, consist of stromatolitic dolomite, oolitic sands, and coarse gravels, deposited in supratidal and intertidal environments. The intercalation of the shallow-water sediments in a deep-water sequence suggests a drastic lowering of the water-level within the Black Sea basin during the Messinian so that the edge of the present abyssal plain was then the edge of a shallow lake.The Messinian draw-down phase of the Black Sea was in existence for about 100,000 years during the Lago-Mare stage of the salinity crisis. The evaporated waters formed an alkaline lake before it was drowned by a brackish marine transgression correlative to the Trubi transgression of the Mediterranean

Carbonate rocks in the Black Sea basin: indicators for shallow water and subaerial exposure during Miocene--Pliocene time, 1979, Stoffers P. , Muller G. ,
Drilling in the Black Sea in general revealed three types of sediments: terrigenous, chemical, and biogenic. Terrigenous muds predominate in the Pleistocene whereas chemical sediments are abundant in the lower Pleistocene--Pliocene to Late Miocene sedimentary section. Biogenic constituents play a minor role only. The chemical sediments include calcite (lake chalk), Mg-calcite, aragonite, siderite and dolomite. Among these, the dolomites of Pliocene to Late Miocene age are most interesting. They were encountered in the two drill sites close to the Bosporus drilled in 2115 to 1750 m water depth, respectively. The dolomites show a great variety of criteria (e.g. intraclasts, algae mats, crusts, pellets, oolites), indicating a shallow water environment with occasional subaerial exposure and supratidal evaporitic conditions. The formation of these shallow water carbonates in the Black Sea is supposed to correlate with the Messinian salinity crisis in the Mediterranean

Sea Caves of King Island, 1979, Goede Albert, Harmon Russell, Kiernan Kevin

Investigation of two King Island sea caves developed in quartzitic rocks shows them to contain a wealth of clastic and chemical sediments. Clastic sediments consist of wave-rounded cobbles, debris cones, and angular rock fragments produced by frost weathering and crystal wedging. Chemical deposits include a variety of calcium carbonate speleothems and also gypsum occurring as wall crusts and blisters. The latter appear to be a speleothem type of rare occurrence. Growth of gypsum is responsible for some crystal wedging of the bedrock. Three basal stalagmite samples have been dated by the Th/U method indicating Late Pleistocene as well as Holocene speleothem growth. The caves are believed to have formed by preferential wave erosion during the Last Interglacial in altered and fractured quartzites. The evidence for pre-Holocene evolution of sea caves and geos in the Tasman region is summarised. Tasmania and the Bass Strait Islands provide a particularly favourable environment for the preservation of relict landforms on rocky coasts because of Late Quaternary uplift. The potential of further studies of sea caves to test two recently advanced archaeological hypotheses is discussed.

Palaeoenvironment of lateritic bauxites with vertical and lateral differentiation, 1983, Valeton Ida,
Formation of lateritic bauxites of the type described in this paper occurs world-wide in Cretaceous and Tertiary coastal plains. The bauxites form elongate belts, sometimes hundreds of kilometres long, parallel to Lower Tertiary shorelines in India and South America and their distribution is not related to a particular mineralogical composition of the parent rock. The lateral movement of the major elements Al, Si, Fe, Ti is dependent on a high level and flow of groundwater. Varying efficiency of subsurface drainage produces lateral facies variations. Interfingering of marine and continental facies indicate a sea-land transition zone where the type of sediments also varies with minor tectonic movements or sea-level changes. A typical sediment association is found in India, Africa, South and North America. It consists of (i) red beds rich in detrital and dissolved material of reworked laterites, (ii) lacustrine sediments and hypersaline precipitates, (iii) lignites intercalated with marine clays, layers of siderite, pyrite, marcasite and jarosite, and (iv) marine chemical sediments rich in oolitic iron ores or glauconite. A model is developed to account for element distributions in lateritic bauxites in terms of groundwater levels and flow. Finally it is shown that many high-level bauxites are formed in coastal plains and that they are subsequently uplifted to their present altitude

Calcrete, 1983, Goudie A. S.

The Geomorphology of the Jenolan Caves Area, 1988, Kiernan, Kevin

The Jenolan Caves occur in a small impounded fluviokarst developed in limestone of late Silurian age. This paper reviews present knowledge of the geomorphology of Jenolan. The surface and underground geomorphology has been strongly influenced by the lithology and structure of the limestone and the non-carbonate rocks that surround the karst. There is evidence in the present geomorphology of the inheritance of influences from palaeo landscapes. Abundant surficial and cave sediments reflect slope gradients and climatic conditions that have existed in the past. Despite the very limited size of the limestone outcrop there is a great variety in the karst, including many kilometres of underground passage and a range of cave morphologies and clastic and chemical sediments underground.

Ironstone is any chemical sedimentary rock with > 15% Fe. An iron formation is a stratigraphic unit which is composed largely of ironstone. The solutes which have precipitated to become ironstone have dissolved from the Earth's surface, from the upper crust, e.g. the basaltic layer of oceanic crust, or from deeper within the Earth. Genetic modellers generally choose between surficial weathering, e.g. soil formation, and hydrothermal fluids which have convected through the upper kilometre of oceanic crust. Most genetic modellers attribute cherty laminated iron formations to hydrothermal convection and noncherty oolitic iron formations to surficial weathering. However, both types of iron formations are attributable to the exhalation of fluids from a source region too deep for convection of seawater. Evidence for a deep source of ferriferous fluids comes from a comparison of ancient ironstone with modern ferriferous sediment in coastal Venezuela. A deep-source origin for ironstone has wide-ranging implications for the origins of other chemical sedimentary ores, e.g. phosphorite, manganostone, bedded magnesite, sedimentary uranium ore, various karst-filling ores, and even petroleum. Preliminary study of a modern oolitic iron deposit described herein suggests that the source of iron and silica to iron formations may have been even deeper than envisioned within most hydrothermal convection models

Evaporites, brines and base metals: What is an evaporite? Defining the rock matrix, 1996, Warren J. K. ,
This paper, the first of three reviews on the evaporite-base-metal association, defines the characteristic features of evaporites in surface and subsurface settings. An evaporite is a rock that was originally precipitated from a saturated surface or near-surface brine in hydrological systems driven by solar evaporation. Evaporite minerals, especially the sulfates such as anhydrite and gypsum, are commonly found near base-metal deposits. Primary evaporites are defined as those salts formed directly via solar evaporation of hypersaline waters at the earth's surface. They include beds of evaporitic carbonates (laminites, pisolites, tepees, stromatolites and other organic rich sediment), bottom nucleated salts (e.g. chevron halite and swallow-tail gypsum crusts), and mechanically reworked salts (such as rafts, cumulates, cross-bedded gypsarenites, turbidites, gypsolites and halolites). Secondary evaporites encompass the diagenetically altered evaporite salts, such as sabkha anhydrites, syndepositional halite and gypsum karst, anhydritic gypsum ghosts, and more enigmatic burial associations such as mosaic halite and limpid dolomite, and nodular anhydrite formed during deep burial. The latter group, the burial salts, were precipitated under the higher temperatures of burial and form subsurface cements and replacements often in a non-evaporite matrix. Typically they formed from subsurface brines derived by dissolution of an adjacent evaporitic bed. Because of their proximity to 'true' evaporite beds, most authors consider them a form of 'true' evaporite. Under the classification of this paper they are a burial form of secondary evaporites. Tertiary evaporites form in the subsurface from saturated brines created by partial bed dissolution during re-entry into the zone of active phreatic circulation. The process is often driven by basin uplift and erosion. They include fibrous halite and gypsum often in shale hosts, as well as alabastrine gypsum and porphyroblastic gypsum crystals in an anhydritic host. In addition to these 'true' evaporites, there is another group of salts composed of CaSO4 or halite. These are the hydrothermal salts. Hydrothermal salts, especially hydrothermal anhydrite, form by the subsurface cooling or mixing of CaSO4- saturated hydrothermal waters or by the ejection of hot hydrothermal water into a standing body of seawater or brine. Hydrothermal salts are poorly studied but often intimately intermixed with sulfides in areas of base-metal accumulations such as the Kuroko ores in Japan or the exhalative brine deeps in the Red Sea. In ancient sediments and metasediments, especially in hydrothermally influenced active rifts and compressional belts, the distinction of this group of salts from 'true' evaporites is difficult and at times impossible. After a discussion of hydrologies and 'the evaporite that was' in the second review, modes and associations of the hydrothermal salts will be discussed more fully in the third review

Comparative study of a stalagmite sample by stratigraphy, laser induced fluorescence spectroscopy, EPR spectrometry and reflectance imaging, 2000, Perrette Yves, Delannoy Jean Jacques, Bolvin Herve, Cordonnier Michel, Destombes Jean Luc, Zhilinskaya Elena A. , Aboukais Antoine,
In the last few years, it has been shown that multi-proxy data are recorded in speleothems and that these secondary deposits can be used to retrieve records of environmental evolution in extra-glacial continental conditions. The goal of many current research is to obtain a better understanding of the processes leading to the growth of these chemical sediments and to relate them to changes in environmental conditions. In the present research, the multi-proxy study of a well-laminated speleothem sample points out the interest of reflectance trend measurement as a water excess indicator. Results from stratigraphy, laser induced fluorescence spectroscopy, EPR spectrometry and reflectance imaging have been combined in order to get a better understanding of the environmental conditions pertaining during speleothem growth. Several parameters have been measured: (i) Mn2 concentration evolution (shown to be linked to soil processes); (ii) linewidth [Delta]H of the low field Mn2 EPR line (linked to crystalline properties of the speleothem); (iii) intensities of the laser excited fluorescence (linked to organic matter content of calcite) and reflectance (linked to calcite porosity); (iv) wavelength [lambda]peak of the intensity maximum of laser excited fluorescence bands (linked to the size of trapped organic molecules). Other data resulting from statistical treatment of the annual fluorescence cycles have also been used. Significant correlations demonstrate the covariation of [lambda]peak and calcite reflectance with the hydrological regime of the cave. In the well drained soils of a karstic area, Mn2 and [lambda]peak appear to be accurate proxies for soil moisture evolution, directly linked to the water excess. These results are confirmed by the comparison with historical knowledge of environmental changes of the surrounding plateau

Element geochemistry of weathering profile of dolomitite and its implications for the average chemical composition of the upper-continental crust - Case studies from the Xinpu profile, northern Guizho, 2000, Ji H. B. , Ouyang Z. , Wang S. J. , Zhou D. Q. ,
Geochemical behavior of chemical elements is studied in a dolomitite weathering profile in upland of karst terrain in northern Guizhou. Two stages can be recognized during the process of in situ weathering of dolomitite: the stage of sedentary accumulation of leaching residue of dolomitite and the stage of chemical weathering evolution of sedentary soil. Ni, Cr, Mo, W and Ti are the least mobile elements with reference to Al. The geochemical behavior of REE is similar to that observed in weathering of other types of rocks. Fractionation of REE is noticed during weathering, and the two layers of REE enrichments are thought to result from downward movement of the weathering front in response to changes in the environment. It is considered that the chemistry of the upper part of the profile, which was more intensively weathered, is representative of the mobile components of the upper curst at the time the dolomitite was formed, while the less weathered lower profile is chemically representative of the immobile constitution. Like glacial till and loess, the 'insoluble' materials in carbonate rocks originating from chemical sedimentation may also provide valuable information about the average chemical composition of the upper continental crust

Cave sediments and paleoclimate, 2007, White William B.
This paper is a review of cave sediments: their characteristics and their application as paleoclimate archives. Cave sediments can be separated into two broad categories, clastic sediments and chemical sediments. Of these, stream-transported clastic sediments and calcite speleothems are both the most common and also the most useful as climatic records. Techniques for dating cave sediments include radiocarbon and U/Th dating of speleothems and paleomagnetic reversals and cosmogenic isotope dating of clastic sediments. Cosmogenic isotope dating of clastic sediments in caves with multiple levels or which occur at different elevations provide a geomorphic record of cave ages and river system evolution over the past 5 Ma. Isotope profiles, trace element profiles, color banding and luminescence profiles of speleothems, mainly stalagmites, produce a detailed paleoclimate record with very high time resolution over the past several hundred thousand years. There is potential application of these methods to late Holocene climates with implications for evaluation of current concern over global warming.

The role of geochemical transformations in karst geomorphogenesis, 2010, Vakhrushev B. A.

Geochemical transformations in the system «water - rock» constitute the genetic basis of karst morphogesis. The article demonstrates that corrosion and chemical sedimentation are largely responsible for the morphological look of cavities. The basic method used is thermodynamic calculations of geochemical equilibria, which determine an aggressiveness of natural solutions.

The change of isobar-isothermal potential (free energy of Gibbs) was used as a measure of chemical affinity of matters, i.e. their capabilities to enter into a reaction between them with formation of other matters.

Variety of hydrochemical situations taking place in carbonate , summarized in five typical conditions, which include considerable part of possible karst morphogenetic settings, while others can be obtained by combination of the examined ones. Every situation is described by hydrochemical calculations.

The second part of the paper is dedicated to practical application of the described methodology, i.e. to the calculations of thermodynamic equilibria observed in the underground streams of the Krasnaya (Red) Cave in Crimea. Close connection of morphological look of the cave with geochemical transformations is shown, which control corrosion and chemical accumulation along the whole length of the karst system.

Results 1 to 12 of 12
You probably didn't submit anything to search for