KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Search in KarstBase
Your search for climatic optimum (Keyword) returned 5 results for the whole karstbase:
One straw stalactite and three stalagmites from the Waitomo district of North Island, New Zealand, were examined for stable isotopes of oxygen and carbon with a view to interpreting their palaeoclimate signal. Dating was by uranium series and AMS 14C for the stalagmites and by gamma-ray spectrometry for the straw. Records were thus established for about 100 years for the straw and 3.9, 10.1 and 10.2 ka for the stalagmites. The range of variability in d18Oc and d13Cc this century is about two-thirds of that experienced over the entire Holocene, and is most simply explained in terms of the oceanic source area of rain. Stable isotope variations in three stalagmites show some general similarities, but have significant differences in detail, which underlines the necessity to base palaeoclimatic interpretations on more than one speleothem record. The d18Oc of each stalagmite varies positively with temperature, indicating the dominance of the ocean source of evaporation in determining the isotopic composition of precipitation and hence speleothem calcite in the Holocene. This conclusion is contrary to that of other authors working in New Zealand, who identified a negative relationship between d18Oc and temperature, while examining time periods extending across the Last Glacial Maximum. It is concluded here that, whereas the ice volume effect dominates the large climatic shifts of glacial-interglacial amplitude, the oceanic source effect becomes more important during the period of relatively stable sea level during the Holocene. Results also indicate a late-Holocene altitudinal effect of 0.2{per thousand} d18Oc per 100 m and an associated temperature relationship of about 0.26{per thousand} per{degrees}C. The average of two records identifies the postglacial climatic optimum to lie in the interval from prior to 10 ka BP to 7.5 ka BP, when d18Oc values were up to 0.6{per thousand} less negative than present, implying an average annual mean temperature that was up to 2.3{degrees}C warmer. The average of three speleothem records for the last 3900 years reveals the coldest period of the Holocene to have occurred about 3 to 2 ka BP, when d18Oc values were typically 0.4{per thousand} more negative than present and average temperatures may have been 1.5{degrees}C cooler. Mean annual temperature variability of about 2{degrees}C was sometimes experienced in little more than 100 years
The paper presents an analysis of characteristic karst tufa from Guangxi, China, which has not been studied before. A comparison with tufa from Dinaric Karst of Croatia is discussed in view of the C-type climate. The major mineral is calcite. Minor minerals are quartz and dolomite, depending on location. The content of calcium carbonate varies from 65% to 92%, and that of magnesium carbonate from 0.03% to 1.77%. Among other elements, the most abundant are Fe, from 0.02% to 1.50%, and Ti, from 0.15% to 0.27%. Many other trace elements (V, Cr, Mn, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Hg and Pb) are also present. Specific activity of radionuclides K-40, Th-232, Cs-137, Ra-226 and U-238 varies from sample to sample. Concentration of U in tufa is close to that reported for sedimentary carbonate. Low concentration Of Cs-137 indicates that this part of the world was not exposed to nuclear explosions. The concentration of Ra-226 is the highest in Mashan County. The ratio U-238/Ra-226 (0.21-0.71) in tufa from Mashan County is significantly lower than the theoretical value of 1. In 5 of the 11 studied samples, stable isotopes delta(13)C and delta(18)O were analyzed. They were dated by means of the C-14 method. One tufa sample originated in the Pleistocene and the others in the Holocene. Because all of the tufa samples contain traces of Na and K, and K < Na, the tufa from Guangxi belong to the CO2-outgassing 'N' type according to the classification of Liu and He (1994)
Sequence biostratigraphic analyses from five industry wells in the Northern Carnarvon Basin (NCB), Western Australia, are tied to seismic stratigraphic interpretations from a set of 3D and 2D seismic data. Distribution patterns of [~]286 benthic and 73 planktonic foraminiferal taxa in sidewall cores and ditch cuttings from Eocene to Pliocene intervals are documented and supplemented with observations of other fossil groups (e.g., fragments of ostracodes, bryozoans, corals, and mollusks) and lithological components such as calcite cement and quartz sand. Preservation of foraminiferal assemblages is extremely variable in latest Eocene to Pliocene stratigraphy, depending upon the location of wells and the interval investigated. Nonetheless, consistent, detectable faunal signals correlate between wells and with prominent seismic horizons and sequences. The late Oligocene to middle Miocene is characterized by deeper-water benthic assemblages dominated by infaunal taxa and a high planktonic abundance. Stratigraphic events in the middle Miocene, including turnover in benthic foraminifera, are interpreted to record a regional flooding event (equivalent to cycle Tejas B (TB) 2.3) at the beginning of the mid-Miocene climatic optimum ([~]16-14.5 Ma). Following this event, seismically defined geomorphic features include karstification on the shelf and incision on the clinoform front. All wells show a major transition to shallow-water, warm conditions on the shelf in the middle and late Miocene, with benthic assemblages dominated by larger foraminifera. This transition appears higher in more-basinward wells and appears to be a result of progradation. Geomorphic features in the late middle Miocene ([~]12 Ma) identified from 3D seismic analyses show an intensification of earlier gully formation, resulting in the development of submarine canyons. Detailed analyses of faunal patterns also provide evidence of higher-frequency sea-level fluctuations (0.5-3 Ma), not detected in the seismic stratigraphic patterns
Middle-to late-Holocene palaeoclimate change has been reconstructed at high resolution by the analysis of the carbon and oxygen isotopes from a thermal ionization mass spectrometric (TIMS) U/Th dated stalagmite from Xiangshui Cave, near Guilin, Guangxi Province, China. The carbon and oxygen isotopic records from the stalagmite suggest that changes in the Asian monsoon since the middle Holocene (6000 BP) can be divided into two periods: (1) an interval from 6000 to 3800 BP when a strong East Asian summer monsoon gradually weakened and climate was relatively warm and humid; (2) a cool period from 3800 to 373 BP when the East Asian summer monsoon was relatively weak and the winter monsoon was probably relatively strong. This cooler interval was interspersed with a number of short warm periods. A This interpretation is largely based upon the general increase in 6180 values of the stalagmite between 6000 and 3800 BP and shifts in 6180 about a relatively heavy mean value between 3800 and 373 BP. The 6000 to 3800 BP trend is probably associated with decrease in precipitation and temperature subsequent to the mid-Holocene climatic optimum
Rivers commonly respond to climate change by aggrading or incising. This is well documented for North American rivers in arid and proglacial regions, but is also true of rivers in unglaciated, humid-temperate regions. Here, we present a record of Holocene hydroclimatology for a humid, temperate watershed in the Appalachian Mountains of eastern North America. We use stable isotope geochemistries of a stalagmite and clastic cave sediments to reconstruct Holocene climate and ecology in the Greenbrier River catchment (3,600 km2 ) of southeastern West Virginia. Independently, we use river-deposited cave sediments to construct a history of incision, aggradation, and morphological change in the surface channel. The clastic cave deposits display enriched (less negative) values of sedimentary d13 Corg during the Holocene Climatic Optimum (HCO), which regional pollen records indicate was warm compared to later climes. The river channel had aggraded by .4 m during or prior to the HCO and adopted an alluvial morphology, probably due to the mobilization of hillslope sediments accumulated during the colder, drier full-glacial conditions of the Late Pleistocene. As climate moistened during the Holocene, the Greenbrier River incised through channel-filling sediments and back onto bedrock, but not until ,3,500 cal. years B.P. Therefore, the bedrock morphology of many streams in the Appalachian Mountains may not have existed for much of the Holocene, which highlights the effect of climate variability on channel processes. The base-level rise is more evidence that bedrock incision by rivers is often episodic and that slow, long-term incision rates reported for Appalachian Rivers are probably not representative of short-term incision rates.
Results 1 to 5 of 5
You probably didn't submit anything to search for