Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That community is all the plants and animals that live in a particular habitat and are bound together by food chains and other interrelations [23].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for decomposition (Keyword) returned 23 results for the whole karstbase:
Showing 1 to 15 of 23
MICROBIAL DECOMPOSITION OF ELM AND OAK LEAVES IN A KARST AQUIFER, 1993, Eichem Ac, Dodds Wk, Tate Cm, Edler C,
Dry Chinquapin oak (Quercus macrocarpa) and American elm (Ulmus americana) leaves were placed in four microcosms fed by groundwater springs to monitor changes in dry mass, ash-free dry mass, and microbial activity over a 35-day period. Oxygen microelectrodes were used to measure microbial activity and to estimate millimeter-scale heterogeneity in that activity. Oak leaves lost mass more slowly than elm leaves. Generally, there was a decrease in total dry weight over the first 14 days, after which total dry weight began to increase. However, there were consistent decreases in ash-free dry mass over the entire incubation period, suggesting that the material remaining after initial leaf decomposition trapped inorganic particles. Microbial activity was higher on elm leaves than on oak leaves, with peak activity occurring at 6 and 27 days, respectively. The level of oxygen saturation on the bottom surface of an elm leaf ranged between 0 and 75% within a 30-mm2 area. This spatial heterogeneity in O2 saturation disappeared when the water velocity increased from 0 to 6 cm s-1. Our results suggest that as leaves enter the groundwater, they decompose and provide substrate for microorganisms. The rate of decomposition depends on leaf type, small-scale variations in microbial activity, water velocity, and the length of submersion time. During the initial stages of decomposition, anoxic microzones are formed that could potentially be important to the biogeochemistry of the otherwise oxic aquifer

Geochemical evolution of a karst stream in Devils Icebox Cave, Missouri, USA, 1997, Wicks Carol M. , Engeln Joseph F. ,
A 3.7 km flowpath along the main stream channel in Devils Icebox Cave, Boone County, Missouri, was sampled on 23 January, 23 March and 18 September 1994. In January 1994, the water was oversaturated with respect to both calcite and dolomite, and only minor compositional changes were observed along the flowpath. In March 1994, the water was oversaturated with respect to calcite but undersaturated with respect to dolomite. Using a mass-balance approach, the composition of the stream water at downstream locations was predicted by dissolution of dolomite (a maximum of 0.16 mmol s-1) and by a minor amount of calcite precipitation (a maximum of 0.03 mmol s-1). In September 1994, there were increases in the Mg, Ca, and total inorganic carbon (TIC) mass fluxes that were due to the dissolution of dolomite (SIdolomiteSI is saturation index) and calcite (SIcalcite2 of the water should decrease downstream; however, we found an increase in the partial pressure of CO2 along the stream. The source of this additional CO2 is thought to be microbial degradation of bat guano. The decomposition of bat guano appeared to change the composition of the stream water during the period the bats are in the cave, and this change was reflected in the composition of the stream water collected in September 1994. Based on the length of the flowpath and on the average velocity of the water along the flowpath, the travel time of water in this karst stream is less than 4 days. The reactions that control the chemistry of the karst water must be those with equally short characteristic times: the dissolution of dolomite and calcite, CO2 exchange, and microbial degradation of organic matter

Geoecological system of karst , 1998, Bá, Rá, Nykevei Ilona

The paper presents some results of the karst geo-ecological system research. The first sphere of the karst-ecological system is the karst microclimate in accordance with the microclimatic factors. Macroclimate is responsible for the quantity and intensity of precipitation while microclimatic effects modify the quantity of water infiltrating to the rocks. Microclimate affects the development of vegetation, soil temperature and humidity. Millions of microorganisms live in the soil, changing the components of soil-air through the decomposition of organic materials and through their own metabolism. They also influence the physical and chemical soil properties indirectly. The inner dynamism of soil can prevent extreme changes occurring in the system, it can change, possibly leading to disturbance in the whole system. The changes due to external effects are reversible down to the rock boundary. When they have entered the rock layer, they become irreversible. Water in the rock layer is the transport agent of materials and energy. This water reaches the surface again in karst springs. Another irreversible process, the dripstone degradation can also be due to polluted water.


Investigations of microbial origin of karst corrosion of soils depending on different temperatures, 2001, Zambo L. , Horvath G. , Telbisz T. ,
The acids accumulating in soils and controlling the solution of carbonates including the predominant CO2, mostly derive from three processes: i) root respiration of higher plants; ii) decomposition of soil organic matter by microorganisms (microbiota) and iii) other decomposition processes not associated with microbial activities. The solution effect under rendzina soils is primarily used for the dissolution of the enclosed limestone fragments and thus here the solution of bedrock is of limited scale. Below karst soils of high clay content the corrosion of bedrock is more intensive than under rendzinas. On the whole, the amount of carbonates dissolved and transported Into the depths of the karst is smaller than below rendzinas. In each soil type studied the solution caused by microbial activities manifold exceeds the rate of solution resulting from temperature factor but there is a manifest dropping trend from rendzina to clays

Introduction of wavelet analyses to rainfall/runoffs relationship for a karstic basin: The case of Licq-Atherey karstic system (France), 2001, Labat D. , Ababou R. , Mangin A. ,
Karstic systems are highly heterogeneous geological formations characterized by a multiscale temporal and spatial hydrologic behavior with more or less localized temporal and spatial structures. Classical correlation and spectral analyses cannot take into account these properties. Therefore, it is proposed to introduce a new kind of transformation: the wavelet transform. Here we focus particularly on the use of wavelets to study temporal behavior of local precipitation and watershed runoffs from a part of the karstic system. In the first part of the paper, a brief mathematical overview of the continuous Morlet wavelet transform and of the multiresolution analysis is presented. An analogy with spectral analyses allows the introduction of concepts such as wavelet spectrum and cross-spectrum. In the second part, classical methods (spectral and correlation analyses) and wavelet transforms are applied and compared for daily rainfall rates and runoffs measured on a French karstic watershed (Pyrenees) over a period of 30 years. Different characteristic time scales of the rainfall and runoff processes are determined, These time scales are typically on the order of a few days for floods, but they also include significant half-year and one-year components and multi-annual components. The multiresolution cross-analysis also provides a new interpretation of the impulse response of the system. To conclude, wavelet transforms provide a valuable amount of information, which may be now taken into account in both temporal and spatially distributed karst modeling of precipitation and runoff

Mineralogy and geochemistry of trace elements in bauxites: the Devonian Schugorsk deposit, Russia, 2001, Mordberg L. E. , Stanley C. J. , Germann K. ,
Processes of mineral alteration involving the mobilization and deposition of more than 30 chemical elements during bauxite formation and epigenesis have been studied on specimens from the Devonian Schugorsk bauxite deposit, Timan, Russia. Chemical analyses of the minerals were obtained by electron microprobe and element distribution in the minerals was studied by element mapping. Interpretation of these data also utilized high-resolution BSE and SE images. The main rock-forming minerals of the Vendian parent rock are calcite, dolomite, feldspar, aegirine, riebeckite, mica, chlorite and quartz; accessory minerals are pyrite, galena, apatite, ilmenite, monazite, xenotime, zircon, columbite, pyrochlore, chromite, bastnaesite and some others. Typically, the grain-size of the accessory minerals in both parent rock and bauxite is from 1 to 40 {micro}m. However, even within these rather small grains, the processes of crystal growth and alteration during weathering can be determined from the zonal distribution of the elements. The most widespread processes observed are: (1) Decomposition of Ti-bearing minerals such as ilmenite, aegirine and riebeckite with the formation of leucoxene', which is the main concentrator of Nb, Cr, V and W. Crystal growth can be traced from the zonal distribution of Nb (up to 16 wt.%). Vein-like leucoxene' is also observed in association with organics. (2) Weathering of columbite and pyrochlore: the source of Nb in leucoxene' is now strongly weathered columbite, while the alteration of pyrochlore is expressed in the growth of plumbopyrochlore rims around Ca-rich cores. (3) Dissolution of sulphide minerals and apatite and the formation of crandallite group minerals: crandallite' crystals of up to 40 {micro}m size show a very clear zonation. From the core to the rim of a crystal, the following sequence of elements is observed: Ca [->] Ba [->] Ce [->] Pb [->] Sr [->] Nd. Sulphur also shows a zoned but more complicated distribution, while the distribution of Fe is rather variable. A possible source of REE is bastnaesite from the parent rock. More than twelve crandallite type cells can be identified in a single crandallite' grain. (4) Alteration of stoichiometric zircon and xenotime with the formation of metamict solid solution of zircon and xenotime: altered zircon rims also bear large amounts of Sc (up to 3.5 wt.%), Fe, Ca and Al in the form of as yet unidentified inclusions of 1-2 {micro}m. Monazite seems to be the least altered mineral of the profile. In the parent rock, an unknown mineral of the composition (wt.%): ThO2 - 54.8; FeO - 14.6; Y2O5 -2.3; CaO - 2.0; REE - 1.8; SiO2 - 12.2; P2O5 - 2.8; total - 94.2 (average from ten analyses) was determined. In bauxite, another mineral was found, which has the composition (wt.%): ThO2 - 24.9; FeO - 20.5; Y2O5 - 6.7; CaO - 2.0; ZrO - 17.6; SiO2 - 8.8; P2O5 - 5.4; total - 89.3 (F was not analysed; average from nine analyses). Presumably, the second mineral is the result of weathering of the first one. Although the Th content is very high, the mineral is almost free of Pb. However, intergrowths of galena and pyrite are observed around the partially decomposed crystals of the mineral. Another generation of galena is enriched in chalcophile elements such as Cu, Cd, Bi etc., and is related to epigenetic alteration of the profile, as are secondary apatite and muscovite

Application of carbon isotope for discriminating sources of soil CO2 in karst area, Guizhou, 2001, Li T. Y. , Wang S. J. ,
Using carbon isotope of soil CO2 this paper discussed the sources of soil CO2 in karst area, Guizhou Province, China. Oxidation-decomposition of organic matter, respiration of plant root and activity of microbe are thought to be the major sources of soil CO2. However, in karst area, the contribution of dissolution of underlying carbonate rock to soil CO2 should be considered as in acidic environment. Atmospheric CO2 is the major composition Of Soil CO2 in surface layer of soil profiles and its proportion in Soil CO2 decreases with increase of soil depth. CO2 produced by dissolution of carbonate rock contributes 34%-46% to soil CO2 below the depth of 10cm in the studied soil profiles covered by grass

Ochtina Aragonite Cave (Western Carpathians, Slovakia): Morphology, mineralogy of the fill and genesis, 2002, Bosak P, Bella P, Cilek V, Ford Dc, Hercman H, Kadlec J, Osborne A, Pruner P,
Ochtina Aragonite Cave is a 300 m long cryptokarstic cavity with simple linear sections linked to a geometrically irregular spongework labyrinth. The metalimestones, partly metasomatically altered to ankerite and siderite, occur as isolated lenses in insoluble rocks. Oxygen-enriched meteoric water seeping along the faults caused siderite/ankerite weathering and transformation to ochres that were later removed by mechanical erosion. Corrosion was enhanced by sulphide weathering of gangue minerals and by carbon dioxide released from decomposition of siderite/ankerite. The initial phreatic speleogens, older than 780 ka, were created by dissolution in density-derived convectional cellular circulation conditions of very slow flow. Thermohaline convection cells operating in the flooded cave might also have influenced its morphology. Later vadose corrosional events have altered the original form to a large extent. Water levels have fluctuated many times during its history as the cave filled during wet periods and then slowly drained. Mn-rich loams with Ni-bearing asbolane and bimessite were formed by microbial precipitation in the ponds remaining after the floods. Allophane was produced in the acidic environment of sulphide weathering. La-Nd-phosphate and REE enriched Mn-oxide precipitated on geochemical barriers in the asbolane layers. Ochres containing about 50 wt.% of water influence the cave microclimate and the precipitation of secondary aragonite. An oldest aragonite generation is preserved as corroded relics in ceiling niches truncated by corrosional bevels. Thermal ionisation mass spectrometry and alpha counting U series dating has yielded ages of about 500-450 and 138-121 ka, indicating that there have been several episodes of deposition, occurring during Quaternary warm periods (Elsterian 1/2, Eemian). Spiral and acicular forms representing a second generation began to be deposited in Late Glacial (14 ka - Allerod) times. The youngest aragonite, frostwork, continues to be deposited today. Both of the, younger generations have similar isotopic compositions, indicating that they originated in conditions very similar, or identical, to those found at present in the cave

Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring, 2003, Massei N. , Wang H. Q. , Dupont J. P. , Rodet J. , Laignel B. ,
Turbid water can be the source of important sanitary problems in karstic regions. It is the case of the Pays de Caux, in Haute Normandie, where the main resource in drinking water is provided by the chalk aquifer. In the case of the typical binary karst of the Pays de Caux, turbidity results from the input in sinkholes of turbid surface water induced by erosion on the plateaus. At some spring tappings, water may be very turbid in period of intense rainfall. The turbidity observed at a karstic spring is a complex signal which contains a part of direct transfer and a part of resuspension of the particles being transported. The aim of this study is turbidigraph separation, which would permit to distinguish the direct transfer and resuspension components of the turbidigraph. These two components are separated by comparing the elementary surface storm-derived water fluxes and elementary turbidity signals at the spring. The procedure takes place in three phases: (i) spring hydrograph separation by means of a two components mixing model (surface water and karstic groundwater) using specific electrical conductivity, (ii) decomposition of storm-derived water flux and turbidity thanks to the second-derivative method, (iii) comparison of the transfer times (approximate tomodal times) of the elementary turbidity and surface water flux signals, respectively. The mass corresponding to direct transfer, computed after signal decomposition, is then used to re-calculate a particle recovery rate, which passes so from 514 to 373%. Relations between particle flux and hydrodynamics show that resuspension can be either the fact of the dynamics of the introduction system, or that of the chalk karstic aquifer in general (case of resuspension not associated to surface water flux). In this sense, evolution of particle flux (and consequently of turbidity) can be also a marker of the karst structure. (C) 2003 Elsevier Science B.V. All rights reserved

Dolomites in SE Asia -- varied origins and implications for hydrocarbon exploration, 2004, Carnell Ajh, Wilson Mej,
Carbonates in SE Asia range in age from Palaeozoic to Recent, but are most important as reservoirs in the Neogene where they comprise a major target for hydrocarbon exploration (e.g. Batu Raja Formation, South Sumatra, Sunda and Northwest Java basins). Carbonates of pre-Tertiary, Palaeogene and Neogene age all show a strong diagenetic overprint in which dolomite occurs as both cementing and replacive phases associated with variable reservoir quality. This paper reviews published data on the occurrence and types of dolomites in SE Asian carbonates, and considers the models that have been used to explain the distribution and origin of dolomite within these rocks. Pre-Tertiary carbonates form part of the economic basement, and are little studied and poorly understood. Although some, such as in the Manusela Formation of Seram, may form possible hydrocarbon reservoirs, most are not considered to form economic prospects. They are best known from the platform carbonates of the Ratburi and Saraburi groups. in Thailand, and the oolitic grainstones of the Manusela Formation of Seram. The Ratburi Group shows extensive dolomitization with dolomite developed as an early replacive phase and as a late-stage cement. Palaeogene carbonates are widely developed in the region and are most commonly developed as extensive foraminifera-dominated carbonate shelfal systems around the margins of Sundaland (e.g. Tampur Formation, North Sumatra Basin and Tonasa Formation, Sulawesi) and the northern margins of Australia and the Birds Head microcontinent (e.g. Faumai Formation, Salawati Basin). Locally, carbonates of this age may form hydrocarbon reservoirs. Dolomite is variably recorded in these carbonates and the Tampur Formation, for example, contains extensive xenotopic dolomite. Neogene carbonates (e.g. Peutu Formation, North Sumatra) are commonly areally restricted, reef-dominated and developed in mixed carbonate-siliciclastic systems. They most typically show a strong diagenetic overprint with leaching, recrystallization, cementation and dolomitization all widespread. Hydrocarbon reservoirs are highly productive and common in carbonates of this age. Dolomite is variably distributed and its occurrence has been related to facies, karstification, proximity to carbonate margins and faults. The distribution and origin of the dolomite has been attributed to mixing-zone dolomitization (commonly in association with karstic processes), sulphate reduction via organic matter oxidation, and dewatering from the marine mudstones that commonly envelop the carbonate build-up. Dolomite has a variable association with reservoir quality in the region, and when developed as a replacive phase tends to be associated with improved porosity and permeability characteristics. This is particularly the case where it is developed as an early fabric-retentive phase. Cementing dolomite is detrimental to reservoir quality, although the extent of this degradation generally reflects the abundance and distribution of this dolomite. Dolomitization is also inferred to have influenced the distribution of non-hydrocarbon gases. This is best documented in North Sumatra where carbon dioxide occurs in quantities ranging from 0 to 85%. There are a number of possible mechanisms for generating this CO2 (e.g. mantle degassing), although the most likely source is considered to be the widely dolomitized Eocene Tampur Formation that forms effective basement for much of the basin. High heat flows are suggested to have resulted in the thermogenic decomposition of dolomite with CO2 produced as a by-product

A Late-glacial and Holocene record of climatic change from a Swiss peat humification profile, 2004, Roosbarraclough Fiona, Van Der Knaap W. O. , Van Leeuwen J. F. N. , Shotyk W. ,
Colorimetric measurements of alkaline extracts from two Swiss peat cores have provided a complete 14500-year-long record of peat humification, a proxy of effective precipitation. Peat from the cold Younger Dryas (11050-9550 cal. bc) was well preserved despite low levels of precipitation. A particularly dry period, peaking at c. 7100 cal. bc, is indicated by well-decomposed peat. Peat from c. 6750-4250 cal. bc shows a low degree of decomposition, indicating a wet bog surface despite relatively warm temperatures and therefore indicating high levels of precipitation. A sharp transition to higher levels of decomposition c. 4450-3750 cal. bc indicates a major transition to a drier bog surface. Subsequently, peat humification generally decreases towards the end of the deeper profile (c. cal. ad 1050), indicating a gradual return to wetter conditions. This gradual decrease is punctuated by periods of particularly low humification which appear to be due to shifts to higher levels of effective precipitation from c. 2500 to 1350 cal. bc, c. 1050 to 550 cal. bc, centered around 150 cal. bc, and from c. cal. ad 550 onwards. Anthropogenic influences appear to have affected peat humification at the site at least since the Middle Ages. This study indicates that humification in colder regions/time periods could be more affected by temperature than precipitation and vice versa

Ochtin Aragonite Cave (Slovakia): morphology, mineralogy and genesis, 2005, Bosk P. , Bella P. , Cilek V. , Ford D. C. , Hercman H. , Kadlec J. , Osborne A. , Pruner P. ,

Ochtiná Aragonite Cave is a 300 m long cryptokarstic cavity with simple linear sections linked to a geometrically irregular spongework labyrinth. The limestones, partly metasomatically altered to ankerite and siderite, occur as lenses in insoluble rocks. Oxygen-enriched meteoric water seeping along the faults caused siderite/ankerite weathering and transformation to ochres that were later removed by mechanical erosion. Corrosion was enhanced by sulphide weathering of gangue minerals and by carbon dioxide released from decomposition of siderite/ankerite. The initial phreatic speleogens, older than 780 ka, were created by dissolution in density-derived convectional cellular circulation conditions of very slow flow. Thermohaline convection cells operating in the flooded cave might also have influenced its morphology. Later vadose corrosional events have altered the original form to a large extent. Water levels have fluctuated many times during its history as the cave filled during wet periods and then slowly drained.
Mn-rich loams with Ni-bearing asbolane and birnessite were formed by microbial precipitation in the ponds remaining after the floods. Allophane was produced in the acidic environment of sulphide weathering. La-Nd-phosphate and REE enriched Mn-oxide precipitated on geochemical barriers in the asbolane layers. Ochres containing about 50 wt.% of water influence the cave microclimate and the precipitation of secondary aragonite. An oldest aragonite generation is preserved as corroded relics in ceiling niches truncated by corrosional bevels. TIMS and alpha counting U series dating has yielded ages of about 500-450 and 138-121 ka, indicating that there have been several episodes of deposition, occurring during Quaternary warm periods (Elsterian 1/2, Eemian). Spiral and acicular forms representing a second generation began to be deposited in Late Glacial (14 ka – Alleröd) times. The youngest aragonite, frostwork, continues to be deposited today. Both of the younger generations have similar isotopic compositions, indicating that they originated in conditions very similar, or identical, to those found at present in the cave.


Intrt des sdiments dtritiques endokarstiques en tant quarchive naturelle ? Discussion autour des dpts lacustres souterrains (Grottes de Choranche - Vercors), 2006, Perroux Annesophie
Interest of endokarstic detritic sediments as a natural archive? Discussion on underground lacustrine deposits (Choranche Caves Vercors) - Among the various natural environmental archives, the underground detritic deposits remained hitherto forgotten, in particular for high resolution analyses and treatments. Through the study of the sedimentary accumulation of the Cathedral Lake (Choranche Caves, Vercors), this paper shows the potential of information which these deposits contain. Sedimentary cores were sampled in the lake, various data are measured (granulometry, spectrocolorimetry, magnetic susceptibility and gray level imagery), then submitted to statistical processing (PCA, Passega images...) and signal treatment (wavelet decomposition). The stratigraphy of charcoal fragments trapped in the sediment and dated by the 14C method, does not appear sufficiently coherent to propose a satisfying age-depth model. Only some dates make it possible to suppose that the sedimentary filling of the lake covers at least the 4000 last years, with an average rate of sedimentation estimated at 1.87mm/yr. The other results of this work make it possible to understand transport and deposition dynamics of the sedimentary particles in an endokarstic lake, in particular with regard to flooding episodes. The Cathedral lake has a binary functioning, with mainly a fine sedimentation (decantation), punctually stopped by flooding episodes, which on their turn have two different dynamics (brutal or progressive phenomena in sedimentation). Lastly, the study of various signals highlights a great number of sedimentation control factors; these factors seem to act mainly on small time scales (more than 80 % of the granulometric signal variation are linked to phenomena with a period inferior to 40 years, according to the chronological framework supposed in the first assumption). This work carried in Choranche shows that endokarstic detritic sediments contain high resolution archives of the environmental evolutions. Subject to a chronological positioning more precise than the one we have today, paleoenvironmental interpretations and reconstitutions will make it possible to go further in their reading.

Mineralogy of stalactites formed by subaerial weathering of natrocarbonatite hornitos at Oldoinyo Lengai, Tanzania, 2006, Mitchell R. H. ,
Stalactites formed by the chemical weathering of natrocarbonatite lava decorate the roofs of hollow inactive hornitos at Oldoinyo Lengai, Tanzania. The stalactites are composed principally of trona with lesser and very variable amounts of nahcolite, (NaHCO3), thermonatrite (Na2CO3.H2O), aphthitalite [(K,Na)3Na(SO4)2], kogarkoite [Na3(SO4)F], schairerite [Na21(SO4)7F6Cl], halite and sylvite. Stalactites are considered to form by the evaporation of Ca-free highly alkaline brines seeping from the altered lavas which form the roofs of the hornitos. The principal subaerial weathering products of natrocarbonatite, i.e. pirsonnite, gaylussite, shortite and calcite are not found in the stalactites and are retained in the altered lavas of the homito roof. Fluorine required for the formation of kogarkoite and schairerite is derived from the decomposition of fluorite at high pH (>10). Sulphur is derived from the decomposition of gregoryite

The legend of carbon dioxide heaviness, 2009, Badino G.
The false legend of carbon dioxide traps resulting from the weight of carbon dioxide gas is disproved. In spite of water-vapor lightness in comparison with air, no water-vapor trap exists on cave ceilings. In fact, underground atmospheres with specific compositions are not related to gravity, but to the absence of any air movement around the gas sources. The process of double diffusion of oxygen and carbon dioxide during organic compound decomposition in still air is shown to be significant. This phenomenon can form atmospheres that are deadly due to oxygen deficiencies and poisonous because of excess carbon dioxide. Carbon dioxide storage behaves like a liquid and can flow or can be poured, as cold air can, but these are typical transient processes with no relation to a caves foul air formation.

Results 1 to 15 of 23
You probably didn't submit anything to search for