Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That stress, neutral is fluid pressure exerted equally in all directions at a point in a saturated deposit by the head of water. neutral pressure is transmitted to the base of the deposit through the pore water, and does not have a measurable influence on the void ratio or on any other mechanical property of the deposits [21].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for deep flow (Keyword) returned 13 results for the whole karstbase:
Karst hydrogeology of the Canadian Rocky Mountains, PhD Thesis, 1991, Worthington, Stephen Richard Hurst

An analysis of the discharge and hydrochemical variations of contrasting springs at Crowsnest Pass showed they were part of a vertical hierarchy in the aquifer, in which underflow and overflow components play a dominant role. It was found that karst springs at Crowsnest Pass and elsewhere show a range between two end members. Thermal springs have long, deep flow paths, with high sulphate concentrations, low discharge variance and low flow velocities. Overflow springs have local shallow flow paths, low sulphate, high discharge variance, and high flow velocities. Intermediate between these end members are underflow springs; in the Rocky Mountains these are mostly aggraded, and give the sustained winter flow and high sulphate concentrations found in major rivers. It was found that underflow or overflow behaviour is able to explain most of the contrasts found between karst springs in discharge and sulphate concentrations. Conversely, differences in bicarbonate concentration are principally due to the ratio of allogenic to autogenic recharge to the aquifer. Hydraulic analysis showed that gradients decrease in the downstream direction, and are typically 0.0001-0.05 at maximum discharges, that friction factors vary by a factor of $>$1000, and that most active conduits have closed-channel flow and are in dynamic equilibrium with sediment supply. The analysis of the hydrological data from Crowsnest Pass and elsewhere has led to the development of a new conceptual model for groundwater flow in karst, in which the Hagen-Poiseuille flow net conditions the aquifer for conduit development, and determines where the conduits will be. The model explains why most conduits are in dynamic equilibrium with sediment supply, why temperate karst springs are mostly vauclusian, what the mean time for speleogenesis is, how $>$98% of the solution of limestone is in the surficial zone, and why there are karstic hot springs in the Rocky Mountains and elsewhere. The model enables predictions to be made of sink to resurgence flow velocities, of conduit depth below the water table, of the ratio of beds to joints used by conduits, of the spacing between cave tiers, and of the depth of vauclusian springs. This new understanding of how karstic aquifers develop and function gives a powerful predictive ability to karst hydrogeology.


Hydrogeochemical vertical zonality in the Cid karst aquifer (Alicante, Spain), 1998, Pulidobosch A. , Andreu J. M. , Estevez A. , Ayanz J. ,
Study of hydrochemical data, conductivity and temperature logs and the samples taken at different depths reveals a marked hydrogeochemical vertical zonality in the Cid karst aquifer. Most saline waters lie in the deepest parts of the aquifer, while those of lowest mineralization occupy the areas of the saturated zone closest to the surface. The hydrodynamic system thus formed is considered to be influenced by two flows: a more superficial one, presenting a lower level of water mineralization; and a deep flow system in which the water, due to contact with Triassic evaporitic materials, experiences a considerable increase in mineralization. (C) Academie des sciences/Elsevier, Paris

Hydraulic and geological factors influencing conduit flow depth, 2005, Worthington, S. R. H.

There has much been speculation as to whether cave formation should occur at, above, or below the water table, but a satisfactory explanation has been lacking until recently. The last 50 years has seen extensive mapping of caves both above and, more recently, below the water table. It is now becoming apparent that there are systematic differences in depth of flow between different areas and that conduit flow to depths >100m below the water table is not uncommon. Such deep flow is facilitated by the lower viscosity of geothermally heated water at depth. Analysis of data from caves shows that depth of flow is primarily a function of flow path length, stratal dip and fracture anisotropy. This explains why conduits form at shallow depths in platform settings such as in Kentucky, at moderate depths (10–100m) in folded strata such as in England and in the Appalachian Mountains, and at depths of several hundred metres in exceptional settings where there are very long flow paths.


The deepest cave in the world in the Arabika Massif (Western Caucasus), 2008, Klimchouk A. B. , Samokhin G. V. & Kasjan Yu. M.

Arabika is an outstanding high-mountain karst massif in the Western Caucasus composed of Lower Cretaceous and Upper Jurassic limestones continuously dipping southwest to the Black Sea shore and plunging below the sea level. The central sector (elevations within 2000-2700 m) is characterized by pronounced glacio-karstic landscape and hosts several deep caves including the deepest cave in the world (Krubera-Voronja Cave) recently explored to the depth of -2191 m.  Dye tracing experiments conducted in 1984-1985 revealed that the Krubera Cave area is hydraulically connected with major springs at the Black Sea shore and the submarine discharge, with the flow directed across major fold structures. Krubera Cave has an extremely steep profile and reveals a huge thickness of the vadose zone. Its lower boundary is at elevation of about 110 m, which suggests a very low overall hydraulic gradient of 0.007-0.008. Reported low salinity groundwater tapped by boreholes in the shore area at depths 40-280, 500, 1750 and 2250 m, which suggests the existence of deep flow system with vigorous flow. Submarine discharge in the Arabika coast is reported at depths up to ca. 400 m bsl. Huge closed submarine depression is revealed at the sea-floor in front of Arabika with the deepest point of ca. 400 m bsl. These facts point to a possibility that the main karst system in Arabika could have originated in response to the Messinian salinity crisis (5.96 – 5.33 Myr) when the Black Sea could have almost dried up, similarly to the adjacent Mediterranean where the sea level drop up to 1600 m is well established. Further development of the huge vadose zone and a super-deep cave have been caused by subsequent uplifts during Pliocene-Pleistocene, highly differential between the shore sector (0.1-0.2 km of total uplift) and the central sector (2-2.5 km) of Arabika.


Geochemical and statistical evidence of recharge, mixing, and controls on spring discharge in an eogenetic karst aquifer, 2009, Moore Paul J. , Martin Jonathan B. , Screaton Elizabeth J.

Information about sources of recharge, distributions of flow paths, and the extent of water–rock reactions in karst aquifers commonly result from monitoring spring chemistry and discharge. To investigate the relationship between spring characteristics and the complexities of karst aquifers, we couple variations in surface- and groundwater chemistry to physical conditions including river stage, precipitation, and  evapotranspiration (ET) within a sink-rise system through a 6-km portion of the Upper Floridan aquifer (UFA) in north-central Florida. Principal component analysis (PCA) of time series major-element compositions suggests that at least three sources of water affect spring discharge, including allogenic recharge into a swallet, diffuse recharge through a thin vadose zone, and water upwelling from deep within the aquifer. The deep-water source exerts the strongest influence on water chemistry by providing a majority of Na+, Mg2+, K+, Cl, and SO2 4 to the system. Anomalously high temperature at one of several monitoring wells reflects vertical flow of about 1 m/year. Mass-balance calculations suggest diffuse recharge and deep-water upwelling can provide up to 50% of the spring discharge; however, their contributions depend on head gradients between the conduit and surrounding aquifer matrix, which are influenced
by variations in precipitation, ET, and river stage. Our results indicate that upwelling from deep flow paths may provide significant contributions of water to spring discharge, and that monitoring only springs limits interpretations of karst systems by masking critical components of the aquifer, such as water sources and flow paths. These results also suggest the matrix in eogenetic aquifers is a major pathway for flow even in a system dominated by conduits.


Morphogenetic analysis of Tavrskaya Cave (Inner Range of the Piedmont Crimea), 2011, Klimchouk, A. B. , Timokhina E. I.

In this paper, we refine the theoretic and methodological basis of speleomorphogenetic analysis and apply it to the Tavrskaya Cave in the Piedmont Range of Crimea, the largest cave in this region. Technique and results of the large-scale morphogenetic mapping of the cave are also presented.

Tavrskaya Cave is developed in the 20 m thick layer of Paleocene limestones of the Inner Range and is controlled by a fracture set of sub-latitudinal orientation that is well expressed in the entire Cretaceous-Paleocene succession and played an important part in the formation of river valleys and various lineaments. The cave structure in the plan view and many features of cave morphology are controlled by sub-vertical tectonic fractures and their intersections with a prominent permeable bedding plane in the middle of the sequence and a layer above it. The cave structure and morphology does not show any indications of epigene speleogenesis (specific pattern, functional/genetic relationships with the surface, vadose solutional modification in the contemporary settings, etc).

Composition of dissolutional speleoforms identified in the cave, their genetic interpretation and the analysis of their relationships, as well as some mineralogical evidence, unequivocally indicate the formation of the cave morphology in the conditions of a confined aquifer system with sluggish circulation, interaction of upwelling flow of a deep flow system with lateral flow in a shallow stratiform aquifer, with significant role of free convection. Relative to the contemporary hydrogeological settings, established in the area since the end of middle Pleistocene, the cave is relict. Vadose conditions on the level of main passages established not later than 130 ka as suggested by the maximum age of dated stalagmites.


Krubera (Voronja) Cave, 2012, Klimchouk, Alexander

At the dawn of the new millennium, in January 2001, Krubera (Voronja) Cave in the Arabika Massif, Western Caucasus, became the deepest known cave in the world, with a depth of 1710 m. Discovering the first cave on the planet deeper that 2000 m had been a long-standing dream of cavers around the world, and this was set in 2001 as an official goal of the Call of the Abyss project of the Ukrainian Speleological Association (Ukr.S.A.), one of the most ambitious and successful exploration project in the history of speleology. In October 2004 this goal was reached, when Krubera Cave was pushed to depth of −2080 m. In subsequent years, the Ukr.S.A. expeditions have explored the cave to a depth of −2,191 m in the main branch, and also explored the second branch in this cave, called Nekujbyshevskaja, to a depth of −1697 m. The Arabika Massif that hosts Krubera Cave has unique geological and paleogeographic preconditions for the development of a cave with exceptionally high vertical range.


Krubera (Voronja) Cave, 2012, Klimchouk, Alexander

At the dawn of the new millennium, in January 2001, Krubera (Voronja) Cave in the Arabika Massif, Western Caucasus, became the deepest known cave in the world, with a depth of 1710 m. Discovering the first cave on the planet deeper that 2000 m had been a long-standing dream of cavers around the world, and this was set in 2001 as an official goal of the Call of the Abyss project of the Ukrainian Speleological Association (Ukr.S.A.), one of the most ambitious and successful exploration project in the history of speleology. In October 2004 this goal was reached, when Krubera Cave was pushed to depth of −2080 m. In subsequent years, the Ukr.S.A. expeditions have explored the cave to a depth of −2,191 m in the main branch, and also explored the second branch in this cave, called Nekujbyshevskaja, to a depth of −1697 m. The Arabika Massif that hosts Krubera Cave has unique geological and paleogeographic preconditions for the development of a cave with exceptionally high vertical range.


Uncommon cave minerals associated to hypogene speleogenesis in Southern France, 2013, Audra, Philippe

Five hypogenic-origin caves from Southern France are presented. Investigations using XRD, SEM and Raman spectroscopy, reveal the presence of uncommon cave minerals. Oilloki Cave is a small lead ore mine-cave containing galena, cerussite, and bismuth (present as native element or as sulfide).La Baume Cave is a hydrothermal breccia-pipe, filled with colorful (red, green, white) clays. Some of the clay minerals (clinochlore se-piolite), could originate from hydrothermal weathering of clastic material. The Mala-coste Quarry, harbors a hydrothermal chimney with enlarged vugs lined with calcite spar and filled with iron oxyhydroxides poolfingers (goethite-hematite) and manganese oxides (birnessite, todorokite). Deposition of iron and manganese oxides results of the pH-Eh evolution along the hydrothermal chimney. Pigette Cave is a hydrothermal ver-tical maze with calcite lining and small iron oxyhydroxides and manganese oxides mass-es. The hydrothermal weathering of the walls deposited grains of lithiophorite, barite, and celadonite, which could originate from glauconite. Baume Galinière Cave is a small horizontal maze originating from the oxidation of sulfide masses of pyrite. Beside the common byproducts (gypsum, goethite, sulfur), the six members of the jarosite sub-group are present: jarosite, ammoniojarosite, argentojarosite, hydronium jarosite, natro-jarosite, plumbojarosite, together with fibroferrite. In these caves, three minerals are new cave minerals (bismuth, celadonite, argentojarosite); some others have been men-tioned before only in a few caves worldwide (clinochlore, lithiophorite, ammoniojaro-site, hydronium jarosite, natrojarosite, plumbojarosite, fibroferrite). The mineralogene-sis involves different processes: (i) Deposition in mixing zone from species carried by rising deep flow (barite, galena, bismuth, birnessite, todorokite, lithiophorite); (ii) Hy-drothermal weathering of clay minerals contained in host rock or present as clastic sediments (clinochlore, sepiolite, celadonite); (iii) Oxidation of sulfide masses (goethite, cerussite, jarosite subgroup minerals, fibroferrite).


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Results 1 to 13 of 13
You probably didn't submit anything to search for