Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That pitot tube is a device used to measure flow velocity via pressure differences [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for delaware basin (Keyword) returned 26 results for the whole karstbase:
Showing 1 to 15 of 26
Regional geology of the Ochoan evaporites, northern part of Delaware Basin, 1984, Bachman G. O.

Geology of the Capitan shelf margin ? subsurface data from the northern Delaware Basin, 1989, Garber R. A. , Grover G. A. , Harris M.

Evaporite karst in the Pecos River Drainage, southeastern New Mexico, 1990, Bachman G. O.

DOLOMITE-ROCK TEXTURES AND SECONDARY POROSITY DEVELOPMENT IN ELLENBURGER GROUP CARBONATES (LOWER ORDOVICIAN), WEST TEXAS AND SOUTHEASTERN NEW-MEXICO, 1991, Amthor Je, Friedman Gm,
Pervasive early- to late-stage dolomitization of Lower Ordovician Ellenburger Group carbonates in the deep Permian Basin of west Texas and southeastern New Mexico is recorded in core samples having present-day burial depths of 1.5-7.0 km. Seven dolomite-rock textures are recognized and classified according to crystal-size distribution and crystal-boundary shape. Unimodal and polymodal planar-s (subhedral) mosaic dolomite is the most widespread type, and it replaced allochems and matrix or occurs as void-filling cement. Planar-e (euhedral) dolomite crystals line pore spaces and/or fractures, or form mosaics of medium to coarse euhedral crystals. This kind of occurrence relates to significant intercrystalline porosity. Non-planar-a (anhedral) dolomite replaced a precursor limestone/dolostone only in zones that are characterized by original high porosity and permeability. Non-planar dolomite cement (saddle dolomite) is the latest generation and is responsible for occlusion of fractures and pore space. Dolomitization is closely associated with the development of secondary porosity; dolomitization pre-and post-dates dissolution and corrosion and no secondary porosity generation is present in the associated limestones. The most common porosity types are non-fabric selective moldic and vuggy porosity and intercrystalline porosity. Up to 12% effective porosity is recorded in the deep (6477 m) Delaware basin. These porous zones are characterized by late-diagenetic coarse-crystalline dolomite, whereas the non-porous intervals are composed of dense mosaics of early-diagenetic dolomites. The distribution of dolomite rock textures indicates that porous zones were preserved as limestone until late in the diagenetic history, and were then subjected to late-stage dolomitization in a deep burial environment, resulting in coarse-crystalline porous dolomites. In addition to karst horizons at the top of the Ellenburger Group, exploration for Ellenburger Group reservoirs should consider the presence of such porous zones within other Ellenburger Group dolomites

Silicification of evaporites in Permian (Guadalupian) back-reef carbonates of the Delaware Basin, west Texas and New Mexico, 1993, Ulmerscholle D. S. , Scholle A. , Brady P. V.

Sulfur redox reactions: hydrocarbons, native sulfur, Mississippi Valley-type deposits sulfuric acid karst in the Delaware Basin, New Mexico and Texas., 1995, Hill C. A.

Sulfur redox reactions: Hydrocarbons, native sulfur, Mississippi Valley-type deposits, and sulfuric acid karst in the Delaware Basin, New Mexico and Texas, 1995, Hill C. ,

Geology of the Delaware Basin, Guadalupe, Apache, and Glass Mounains, New Mexico and West Texas, 1996, Hill C. A.

Reef margin collapse, gully formation and filling within the Permian Capitan Reef: Carlsbad Caverns, New Mexico, USA, 1999, Harwood G. M. , Kendall A. C. ,
An area of reef margin collapse, gully formation and gully fill sedimentation has been identified and mapped within Left Hand Tunnel, Carlsbad Caverns. It demonstrates that the Capitan Reef did not, at all times, form an unbroken border to the Delaware Basin. Geopetally arranged sediments within cavities from sponge-algal framestones of the reef show that the in situ reef today has a 10 degrees basinwards structural dip. Similar dips in adjacent back-reef sediments, previously considered depositional, probably also have a structural origin. Reoriented geopetal structures have also allowed the identification of a 200-m-wide, 25-m-deep gully within the reef, which has been filled by large (some >15 m), randomly orientated and, in places, overturned blocks and boulders, surrounded by finer reef rubble, breccias and grainstones. Block supply continued throughout gully filling, implying that spalling of reef blocks was a longer term process and was not a by-product of the formation of the gully. Gully initiation was probably the result of a reef front collapse, with a continued instability of the gully bordering reef facies demonstrated by their incipient brecciation and by faults containing synsedimentary fills. Gully filling probably occurred during reef growth, and younger reef has prograded over the gully fill. Blocks contain truncated former aragonite botryoidal cements, indicating early aragonite growth within the in situ reef. In contrast, former high-magnesian calcite rind cements post-date sedimentation within the gully. The morphology of cavern passages is controlled by reef facies variation, with narrower passages cut into the in situ reef and wider passages within the gully fill. Gully fills may also constitute more permeable zones in the subsurface

Bedrock Features of Lechuguilla Cave, Guadalup Mountains, New Mexico, 2000, Duchene, H. R.
Lechuguilla is a hypogenic cave dissolved in limestones and dolostones of the Capitan Reef Complex by sulfuric acid derived from oil and gas accumulations in the Delaware Basin of southeast New Mexico and west Texas. Most of the cave developed within the Seven Rivers and Capitan Formations, but a few high level passages penetrate the lower Yates Formation. The Queen and possibly Goat Seep formations are exposed only in the northernmost part of the cave below -215 m. Depositional and speleogenetic breccias are common in Lechuguilla. The cave also has many spectacular fossils that are indicators of depositional environments. Primary porosity in the Capitan and Seven Rivers Formations was a reservoir for water containing hydrogen sulfide, and a pathway for oxygenated meteoric water prior to and during sulfuric acid speleogenesis. Many passages at depths >250 m in Lechuguilla are in steeply dipping breccias that have a west-southwest orientation parallel to the strike of the shelf margin. The correlation between passage orientation and depositional strike suggests that stratigraphy controls these passages.

A Preliminary U-Pb Date on Cave Spar, Big Canyon, Guadalupe Mountains, New Mexico, USA, 2000, Lundberg, J. , Ford, D. C. , Hill, C. A.
U-Pb dating of a football-sized, dogtooth spar, calcite crystal collected from a cave in Big Canyon, Guadalupe Mountains, New Mexico, USA, gave an age estimate of 87 - 98 Ma for calcite deposition. This Upper Cretaceous (Laramide) date is important because: (1) it implies that there may have been a major karsting episode in the Guadalupe Mountains in the Laramide; (2) it implies that the Laramide was a time of heating and deeply circulating hydrothermal water; (3) it relates to the possible time of regional uplift above sea level of the Guadalupe Mountains along with the rest of the western United States; and (4) it relates to a time of possible hydrocarbon maturation and migration in the Delaware Basin

Hydrochemical Interpretation of Cave Patterns in the Guadalupe Mountains, New Mexico, 2000, Palmer, A. N. , Palmer, M. V.
Most caves in the Guadalupe Mountains have ramifying patterns consisting of large rooms with narrow rifts extending downward, and with successive outlet passages arranged in crude levels. They were formed by sulfuric acid from the oxidation of hydrogen sulfide, a process that is now dormant. Episodic escape of H2S-rich water from the adjacent Delaware Basin, and perhaps also from strata beneath the Guadalupes, followed different routes at different times. For this reason, major rooms and passages correlate poorly between caves, and within large individual caves. The largest cave volumes formed where H2S emerged at the contemporary water table, where oxidation was most rapid. Steeply ascending passages formed where oxygenated meteoric water converged with deep-seated H2S-rich water at depths as much as 200 m below the water table. Spongework and network mazes were formed by highly aggressive water in mixing zones, and they commonly rim, underlie, or connect rooms. Transport of H2S in aqueous solution was the main mode of H2S influx. Neither upwelling of gas bubbles nor molecular diffusion appears to have played a major role in cave development, although some H2S could have been carried by less-soluble methane bubbles. Most cave origin was phreatic, although subaerial dissolution and gypsum-replacement of carbonate rock in acidic water films and drips account for considerable cave enlargement above the water table. Estimates of enlargement rates are complicated by gypsum replacement of carbonate rock because the gypsum continues to be dissolved by fresh vadose water long after the major carbonate dissolution has ceased. Volume-for-volume replacement of calcite by gypsum can take place at the moderate pH values typical of phreatic water in carbonates, preserving the original bedrock textures. At pHs less than about 6.4, this replacement usually takes place on a molar basis, with an approximately two-fold volume increase, forming blistered crusts.

DETRITAL ORIGIN OF A SEDIMENTARY FILL, LECHUGUILLA CAVE, GUADALUPE MOUNTAINS, NEW MEXICO, 2000, Foos Am, Sasowsky Id, Larock Ej, Kambesis Pn,
Lechuguilla Cave is a hypogene cave formed by oxidation of ascending hydrogen sulfide from the Delaware Basin. A unique sediment deposit with characteristics suggesting derivation from the land surface, some 285 m above, was investigated. At this location, the observed stratigraphy (oldest to youngest) was: bedrock floor (limestone), cave clouds (secondary calcite), calcite-cemented silstone, finely laminated clay, and calcite rafts. Grain-size analysis indicates that the laminated clay deposits are composed of 59-82% clay-size minerals. The major minerals of the clay were determined by X-ray diffraction analysis and consist of interstratified illite-smectite, kaolinite, illite, goethite, and quartz. Scanning electron microscopy observations show that most of the clay deposit is composed of densely packed irregular-shaped clay-size flakes. One sample from the top of the deposit was detrital, containing well-rounded, silt-size particles. Surface soils are probably the source of the clay minerals. The small amount of sand- and silt-size particles suggests that detrital particles were transported in suspension. The lack of endellite and alunite is evidence that the clays were emplaced after the sulfuric-acid dissolution stage of cave formation. Fossil evidence also suggests a previously existing link to the surface

The Salt That Wasn't There: Mudflat Facies Equivalents to Halite of the Permian Rustler Formation, Southeastern New Mexico, 2000, Powers Dennis W. , Holt Robert M. ,
Four halite beds of the Permian Rustler Formation in southeastern New Mexico thin dramatically over short lateral distances to correlative clastic (mudstone) beds. The mudstones have long been considered residues after post-burial dissolution (subrosion) of halite, assumed to have been deposited continuously across the area. Hydraulic properties of the Culebra Dolomite Member have often been related to Rustler subrosion. In cores and three shafts at the Waste Isolation Pilot Plant (WIPP), however, these mudstones display flat bedding, graded bedding, cross-bedding, erosional contacts, and channels filled with intraformational conglomerates. Cutans indicate early stages of soil development during subaerial exposure. Smeared intraclasts developed locally as halite was removed syndepositionally during subaerial exposure. We interpret these beds as facies formed in salt-pan or hypersaline-lagoon, transitional, and mudflat environments. Halite is distributed approximately as it was deposited. Breccia in limited areas along one halite margin indicates post-burial dissolution, and these breccias are key to identifying areas of subrosion. A depositional model accounts for observed sedimentary features of Rustler mudstones. Marked facies and thickness changes are consistent with influence by subsidence boundaries, as found in some modern continental evaporites. A subrosion model accounts for limited brecciated zones along (depositional) halite margins, but bedding observed in the mudstones would not survive 90% reduction in rock volume. Depositional margins for these halite beds will be useful in reconstructing detailed subsidence history of the Late Permian in the northern Delaware Basin. It also no longer is tenable to attribute large variations in Culebra transmissivity to Rustler subrosion

Geomicrobiology of caves: A review, 2001, Northup D. E. , Lavoie K. H. ,
In this article, we provide a review of geomicrobiological interactions in caves, which are nutrient-limited environments containing a variety of redox interfaces. Interactions of cave microorganisms and mineral environments lead to the dissolution of, or precipitation on, host rock and speleothems (secondary mineral formations). Metabolic processes of sulfur-, iron-, and manganese-oxidizing bacteria can generate considerable acidity, dissolving cave walls and formations. Examples of possible microbially influenced corrosion include corrosion residues (e.g., Lechuguilla and Spider caves, New Mexico, USA), moonmilk from a number of caves (e.g., Spider Cave, New Mexico, and caves in the Italian Alps), and sulfuric acid speleogenesis and cave enlargement (e.g., Movile Cave, Romania, and Cueva de Villa Luz, Mexico). Precipitation processes in caves, as in surface environments, occur through active or passive processes. In caves, microbially induced mineralization is documented in the formation of carbonates, moonmilk, silicates, clays, iron and manganese oxides, sulfur, and saltpeter at scales ranging from the microscopic to landscape biokarst. Suggestions for future research are given to encourage a move from descriptive, qualitative studies to more experimental studies

Results 1 to 15 of 26
You probably didn't submit anything to search for