Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That water-table map is a map showing the upper surface of the phreatic zone of a water-table aquifer by means of contour lines [1]. see also phreatic zone; potentiometric-surface map; water-table aquifer.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for dolomitization (Keyword) returned 68 results for the whole karstbase:
Showing 1 to 15 of 68
Stable isotope study of karstic-related dolomitization; Jurassic rocks from the coastal plain, Israel, 1984, Buchbinder Lg, Magaritz M, Goldberg M,

Regional dolomitization of subtidal shelf carbonates: Burlington and Keokuk Formations (Mississippian), Iowa and Illinois, 1987, Harris David C. , Meyers William J. ,
Cathodoluminescent petrography of crinoidal limestones and dolomites from the Mississippian (Osagean) Burlington and Keokuk Formations in Iowa and Illinois has revealed a complex diagenetic history of calcite cementation, dolomitization, chertification and compaction. Dolomite occurs abundantly in subtidal, open-marine facies throughout the study area. Three luminescently and chemically distinct generations of dolomite can be recognized regionally. Dolomite I, the oldest generation, is luminescent, thinly zoned, and occurs mainly as a replacement of lime mud. Dolomite II has dull red unzoned luminescence, and occurs mainly as a replacement of dolomite I rhombs. Dolomite III is non-luminescent, and occurs as a syntaxial cement on, and replacement of, older dolomite I and II rhombs. Petrography of these dolomite generations, integrating calcite cement stratigraphy, chertification and compaction histories has established the diagenetic sequence. Dolomites I and II pre-date all calcite cements, most chert, intergranular compaction and styloites. Dolomite III precipitation occurred within the calcite cement sequence, after all chert, and after at least some stylolitization. The stratigraphic limit of these dolomites to rocks older than the St Louis Limestone (Meramecian) suggests that dolomitization took place before or during a regional mid-Meramecian subaerial unconformity. A single dolomitization model cannot reasonably explain all three generations of dolomite in the Burlington and Keokuk limestones. Petrographic and geochemical characteristics coupled with timing constraints suggest that dolomite I formed in a sea water-fresh water mixing zone associated with a meteoric groundwater system established beneath the pre-St Louis unconformity. Dolomite II and III may have formed from externally sourced warm brines that replaced precursor dolomite at shallow burial depths. These models therefore suggest that the required Mg for dolomite I was derived mainly from sea water, whereas that for dolomites II and III was derived mainly from precursor Burlington--Keokuk dolomites through replacement or pressure solution

LATE-STAGE DOLOMITIZATION OF THE LOWER ORDOVICIAN ELLENBURGER GROUP, WEST TEXAS, 1991, Kupecz J. A. , Land L. S. ,
Petrography of the Lower Ordovician Ellenburger Group, both in deeply-buried subsurface cores and in outcrops which have never been deeply buried, documents five generations of dolomite, three generations of microquartz chert, and one generation of megaquartz. Regional periods of karstification serve to subdivide the dolomite into 'early-stage', which predates pre-Middle Ordovician karstification, and 'late-stage', which postdates pre-Middle Ordovician karstification and predates pre-Permian karstification. Approximately 10% of the dolomite in the Ellenburger Group is 'late-stage'. The earliest generation of late-stage dolomite, Dolomite-L1, is interpreted as a precursor to regional Dolomite-L2. L1 has been replaced by L2 and has similar trace element, O, C, and Sr isotopic signatures, and similar cathodoluminescence and backscattered electron images. It is possible to differentiate L1 from L2 only where cross-cutting relationships with chert are observed. Replacement Dolomite-L2 is associated with the grainstone, subarkose, and mixed carbonate-siliciclastic facies, and with karst breccias. The distribution of L2 is related to porosity and permeability which focused the flow of reactive fluids within the Ellenburger. Fluid inclusion data from megaquartz, interpreted to be cogenetic with Dolomite-L2, yield a mean temperature of homogenization of 85 6-degrees-C. On the basis of temperature/delta-O-18-water plots, temperatures of dolomitization ranged from approximately 60 to 110-degrees-C. Given estimates of maximum burial of the Ellenburger Group, these temperatures cannot be due to burial alone and are interpreted to be the result of migration of hot fluids into the area. A contour map of delta-O-18 from replacement Dolomite-L2 suggests a regional trend consistent with derivation of fluids from the Ouachita Orogenic Belt. The timing and direction of fluid migration associated with the Ouachita Orogeny are consistent with the timing and distribution of late-stage dolomite. Post-dating Dolomite-L2 are two generations of dolomite cement (C1 and C2) that are most abundant in karst breccias and are also associated with fractures, subarkoses and grainstones. Sr-87/Sr-86 data from L2, C1, and C2 suggest rock-buffering relative to Sr within Dolomite-L2 (and a retention of a Lower Ordovician seawater signature), while cements C1 and C2 became increasingly radiogenic. It is hypothesized that reactive fluids were Pennsylvanian pore fluids derived from basinal siliciclastics. The precipitating fluid evolved relative to Sr-87/Sr-86 from an initial Pennsylvanian seawater signature to radiogenic values; this evolution is due to increasing temperature and a concomitant evolution in pore-water geochemistry in the dominantly siliciclastic Pennsylvanian section. A possible source of Mg for late-stage dolomite is interpreted to be from the dissolution of early-stage dolomite by reactive basinal fluids

DOLOMITE-ROCK TEXTURES AND SECONDARY POROSITY DEVELOPMENT IN ELLENBURGER GROUP CARBONATES (LOWER ORDOVICIAN), WEST TEXAS AND SOUTHEASTERN NEW-MEXICO, 1991, Amthor Je, Friedman Gm,
Pervasive early- to late-stage dolomitization of Lower Ordovician Ellenburger Group carbonates in the deep Permian Basin of west Texas and southeastern New Mexico is recorded in core samples having present-day burial depths of 1.5-7.0 km. Seven dolomite-rock textures are recognized and classified according to crystal-size distribution and crystal-boundary shape. Unimodal and polymodal planar-s (subhedral) mosaic dolomite is the most widespread type, and it replaced allochems and matrix or occurs as void-filling cement. Planar-e (euhedral) dolomite crystals line pore spaces and/or fractures, or form mosaics of medium to coarse euhedral crystals. This kind of occurrence relates to significant intercrystalline porosity. Non-planar-a (anhedral) dolomite replaced a precursor limestone/dolostone only in zones that are characterized by original high porosity and permeability. Non-planar dolomite cement (saddle dolomite) is the latest generation and is responsible for occlusion of fractures and pore space. Dolomitization is closely associated with the development of secondary porosity; dolomitization pre-and post-dates dissolution and corrosion and no secondary porosity generation is present in the associated limestones. The most common porosity types are non-fabric selective moldic and vuggy porosity and intercrystalline porosity. Up to 12% effective porosity is recorded in the deep (6477 m) Delaware basin. These porous zones are characterized by late-diagenetic coarse-crystalline dolomite, whereas the non-porous intervals are composed of dense mosaics of early-diagenetic dolomites. The distribution of dolomite rock textures indicates that porous zones were preserved as limestone until late in the diagenetic history, and were then subjected to late-stage dolomitization in a deep burial environment, resulting in coarse-crystalline porous dolomites. In addition to karst horizons at the top of the Ellenburger Group, exploration for Ellenburger Group reservoirs should consider the presence of such porous zones within other Ellenburger Group dolomites

Evolution des karsts Ocaniens (Karsts, bauxite et phosphates), 1992, Bourrouilhlejan, Fr.
EVOLUTION OF THE PACIFIC OCEAN KARSTS - Karst phenomena constitute one of the main characteristics of the "high carbonate islands" of the Pacific Ocean. They are the key to the under-standing of the geological evolution, the stratigraphy, from Lower Miocene to Pleistocene and mid-Holocene, the diagenesis, mainly dolomitization and the current economic interest based on bauxite and phosphate. The eustatic variations have been numerous over the past 25 million years and can be added or substracted from the emersion and submersion movements of the plate supporting these carbonate platforms. Each island therefore has its own complex geological background with dolomitization, calcrete, bauxitic soils, fossil marine notches and karst surface either submerged or filled with phosphate, which can be mined for profit. Thanks to a thorough study of these platforms, it has been possible to establish an evolution of karst genesis in accordance with the evolution of the Pacific lithosphere and also to draw up a new model of phosphate genesis linked to phosphato-bauxitic soils and meromictic anoxic lakes.

MURUROA ATOLL (FRENCH-POLYNESIA) .1. STRUCTURE AND GEOLOGICAL EVOLUTION, 1992, Buigues D, Gachon A, Guille G,
From a geographical point of view, the atoll of Mururoa belongs to the Tuamotu archipelago. In its largest dimension Mururoa (28 x 10 km) is oriented N080-degrees-E, a direction which is different from that of the other atolls of the Tuamotu, generally oriented parallel to the Pacific plate motion, N130-degrees-E. The atoll of Mururoa is built on a submarine plateau of 130 km long and 30 km wide. The western side of this plateau is 90 km long and N080-degrees-E oriented, the eastern one 40 km long and N095-degrees-E oriented. Three deep main structures of the atoll are revealed by strong aeromagnetic anomalies elongated and oriented once more N080-degrees-E. They represent ancient riftzones, similar to the present time Hawaiian ones. The most important of them, situated at southern end of the atoll, is the prolongation of the eastern plateau. The principal petrographic facies have been defined from the numerous drill holes bored in the upper 1,100 m. From the base to the top are represented volcanic deposits, a volcano-sedimentary serie of both carbonate and volcanic origin and finally reefal carbonates (limestones and dolomites). The volcanic facies represent successively submarine, transitional and aerial volcanic activity. They are commonly affected by early stage of hydrothermalism, due to lava-sea-water chemical interaction, and are frequently supported by differentiated dykes, occasionally interrupted by reefal limestones. The main geometrical distribution of the facies through the atoll and the radiochronology lead to the following model of formation : during early stages of the atoll building two main separate edifices emerged before joining and forming a single volcano. This double structure was similar to the present time morphology of Tahiti. The volcanic activity ceased 10.6 Ma ago, an age which perfectly suits a hot spot origin, at present located to the south-east of Pitcairn island

Multistage dolomitization in the Society Cliffs Formation, northern Baffin Island, Northwest Territories, Canada., 1992, Ghazban E. , Schwarcz H. P. , Ford D. C.

CAYMANITE, A CAVITY-FILLING DEPOSIT IN THE OLIGOCENE MIOCENE BLUFF FORMATION OF THE CAYMAN ISLANDS, 1992, Jones B. ,
Caymanite is a laminated, multicoloured (white, red, black) dolostone that fills or partly fills cavities in the Bluff Formation of the Cayman Islands. The first phase of caymanite formation occurred after deposition, lithification, and karsting of the Oligocene Cayman Member. The second phase of caymanite formation occurred after joints had developed in the Middle Miocene Pedro Castle Member. Caymanite deposition predated dolomitization of the Bluff Formation 2-5 Ma ago. Caymanite is formed of mudstones, wackestone, packstones, and grainstones. Allochems include foraminifera, red algae, gastropods, bivalves, and grains of microcrystalline dolostone. Sedimentary structures include planar laminations, graded bedding, mound-shaped laminations, desiccation cracks, and geopetal fabrics. Original depositional dips ranged from 0 to 60-degrees. Although caymanite originated as a limestone, dolomitization did not destroy the original sedimentary fabrics or structures. The sediments that formed caymanite were derived from shallow offshore lagoons, swamps, and possibly brackish-water ponds. Pigmentation of the red and black laminae can be related to precipitates formed of Mn, Fe, Al, Ni, Ti, P, K, Si, and Ca, which occur in the intercrystalline pores. These elements may have been derived from terra rossa, which occurs on the weathered surface of the Bluff Formation. Caymanite colours were inherited from the original limestone. Stratigraphic and sedimentologic evidence shows that sedimentation was episodic and that the sediment source changed with time. Available evidence suggests that caymanite originated from sediments transported by storms onto a highly permeable karst terrain. The water with its sediment load then drained into the subsurface through joints and fissures. The depth to which these waters penetrated was controlled by the length of the interconnected cavity system. Upon entering cavities, sedimentation was controlled by a complex set of variables

LATE TO POSTHERCYNIAN HYDROTHERMAL ACTIVITY AND MINERALIZATION IN SOUTHWEST SARDINIA (ITALY), 1992, Boni M, Iannace A, Koppel V, Fruhgreen G, Hansmann W,
Several kinds of base metal deposits occur in the lower Paleozoic of southwest Sardinia (Iglesiente-Sulcis mineral district). This paper deals with those deposits which are generally referred to as Permo-Triassic, because they accompany and postdate the Hercynian orogeny and are related to magmatic activity. A large number of previously published geochemical data, integrated with additional new data (Sr, Pb, O, C, and S isotopes), are reviewed and discussed in the frame of the late to post-Hercynian geologic evolution of southwest Sardinia. According to geological and mineralogical characteristics, three types of deposits can be distinguished: (1) skarn ores related to late Hercynian leucogranitic intrusions, (2) high-temperature veins, and (3) low-temperature veins and karst filling. Pervasive epigenetic dolomitization phenomena are geochemically related to the low-temperature deposits. Sr and Pb isotopes of the first and second types (0.7097-0.7140 Sr-87/Sr-86; 17.97-18.29 Pb-206/Pb-204; 38.11-38.45 Pb-208/Pb-204) are distinctly more radiogenic than those of the third type (0.7094-0.7115 Sr-87/Sr-86; 17.86-18.05 Pb-206/Pb-204; 37.95-38.19 Pb-208/Pb-204) which, in turn, are closer to Paleozoic ores and carbonates. Fluid inclusion data indicate that the fluids responsible for mineralization of the first and second types of deposits were hot and dilute (T(h)= 370-degrees-140-degrees-C; <5 wt % NaCl equiv). In contrast, relatively colder and very saline fluids (T(h)= 140-degrees-70-degrees-C; >20 wt % NaCl equiv) were responsible for the third type of mineralization, as well for epigenetic dolomitization of the Cambrian host rocks. O isotopes measured in minerals from the first two types (deltaO-18SMOW = 12.8-18.9 parts per thousand) are O-18 depleted with respect to the third type (deltaO-18SMOW = 15.9-22.1 parts per thousand). These data, coupled with fluid inclusion formation temperatures, indicate that the fluids responsible for the first two types of mineralization were O-18 enriched with respect to those of the third type and related hydrothermal phenomena. The deltaS-34CDT in sulfides of the first two types vary between 3.7 and 10.73 per mil, whereas the values of the third type range from 12.0 to 17.9 per mil. Late to post-Hercynian mineralization is thus explained as the result of three distinct, though partly superimposed, hydrothermal systems. System 1 developed closer to the late Hercynian leucogranitic intrusions and led to the formation of the first and subsequently the second type of mineralization. The relatively hot and diluted fluids had a heated meteoric, or even partly magmatic, origin. Metals were leached from an external, radiogenic source, represented either by Hercynian leucogranites or by Paleozoic metasediments. Sulfur had a partly magmatic signature. System 2 was characterized by very saline, colder fluids which promoted dolomitization, silicification, and vein and karst mineralization. These fluids share the typical characteristics of formation waters, even though their origins remain highly speculative. The hydrothermal system was mainly rock dominated, with only a minor participation of the external radiogenic source of metals. Sulfur was derived by recirculation of pre-Hercynian strata-bound ores. System 3 records the invasion of fresh and cold meteoric waters which precipitated only minor ore and calcite gangue. It may represent the further evolution of system 2, possibly spanning a time well after the Permo-Triassic. The timing of all these phenomena is still questionable, due to the poor geologic record of the Permo-Triassic in southwest Sardinia. Nevertheless, the hypothesized scenario bears many similarities with hydrothermal processes documented throughout the Hercynian in Europe and spanning the same time interval. A comparison with the latter mineralization and hydrothermal activities leads to the hypothesis that the first two types of mineralization are linked to late Hercynian magmatic activity, whereas the third type may be related to either strike-slip or tensional tectonics which, throughout Europe mark the transition from the Hercynian orogeny to the Alpine cycle

VOID-FILLING DEPOSITS IN KARST TERRAINS OF ISOLATED OCEANIC ISLANDS - A CASE-STUDY FROM TERTIARY CARBONATES OF THE CAYMAN-ISLANDS, 1992, Jones B. ,
Caves, fossil mouldic cavities, sinkholes and solution-widened joints are common in the Cayman and Pedro Castle members of the Bluff Formation (Oligocene Miocene) on Grand Cayman and Cayman Brac because they have been subjected to repeated periods of karst development over the last 30 million years. Many voids contain a diverse array of sediments and/or precipitates derived from marine or terrestrial environs, mineral aerosols, and groundwater. Exogenic sediment was transported to the cavities by oceanic storm waves, transgressive seas, runoff following tropical rain storms and/or in groundwater. At least three periods of deposition were responsible for the occlusion of voids in the Cayman and Pedro Castle members. Voids in the Cayman Member were initially filled or partly filled during the Late Oligocene and Early Miocene. This was terminated with the deposition of the Pedro Castle Member in the Middle Miocene. Subsequent exposure led to further karst development and void-filling sedimentation in both the Cayman and Pedro Castle members. Speleothems are notably absent. The void-filling deposits formed during these two periods, which were predominantly marine in origin, were pervasively dolomitized along with the host rock 2 5 million years ago. The third period of void-filling deposition. after dolomitization of the Bluff Formation, produced limestone, various types of breccia, terra rossa, speleothemic calcite and terrestrial oncoids. Most of these deposits formed since the Sangamon highstand 125 000 years ago. Voids in the present day karst are commonly filled or partly filled with unconsolidated sediments. Study of the Bluff Formation of Grand Cayman and Cayman Brac shows that karst terrains on isolated oceanic islands are characterized by complex successions of void-filling deposits that include speleothems and a variety of sediment types. The heterogenetic nature of these void-filling deposits is related to changes in sea level and climatic conditions through time

THE OCCURRENCE AND EFFECT OF SULFATE REDUCTION AND SULFIDE OXIDATION ON COASTAL LIMESTONE DISSOLUTION IN YUCATAN CENOTES, 1993, Stoessell R. K. , Moore Y. H. , Coke J. G. ,
Dissolution of carbonate minerals in the coastal halocline is taking place in the karst terrain along the northeastern coast of the Yucatan Peninsula. The dissolution is being accelerated in cenotes (sinkholes) where sulfate reduction and oxidation of the produced sulfide is occurring. Hydrogen-sulfide concentrations ranged from 0.06 to 4 mmolal within the halocline in two sinkholes. Relative to concentrations expected by conservative mixing, fluids with high hydrogen-sulfide concentrations were correlated with low sulfate concentrations, high alkalinities, low pH values, and heavy sulfur isotope values for sulfate. Hydrogen-sulfide concentrations were less than those predicted from sulfate reduction, calculated from deficiencies in measured sulfate concentrations, indicating mobility and loss of aqueous sulfide. Fluids with low hydrogen-sulfide concentrations were correlated with very high calcium concentrations, high strontium and sulfate concentrations, slightly elevated alkalinities, low pH values, and sea-water sulfur isotope values for sulfate. Gypsum dissolution is supported by the sulfur isotopes as the major process producing high sulfate concentrations. However, oxidation of aqueous sulfide to sulfuric acid, resulting in carbonate-mineral dissolution is needed to explain the calcium concentrations, low pH values, and only slightly elevated alkalinities. The halocline may trap hydrogen sulfide that has been stripped from the underlying anoxic salt water. The halocline can act as a stable, physical boundary, holding some of the hydrogen sulfide until it is oxidized back to sulfuric acid through interaction with the overlying, oxygenated fresh water or through the activity of sulfide-oxidizing bacteria

THE EVOLUTION OF THE MIDDLE TRIASSIC (MUSCHELKALK) CARBONATE RAMP IN THE SE IBERIAN RANGES, EASTERN SPAIN - SEQUENCE STRATIGRAPHY, DOLOMITIZATION PROCESSES AND DYNAMIC CONTROLS, 1993, Lopezgomez J. , Mas R. , Arche A. ,
The Upper Permian-Triassic strata of the SE Iberian Ranges, eastern Spain, display the classic Germanic-type facies of Buntsandstein, Muschelkalk and Keuper. The Muschelkalk is represented by two carbonate units with a siliciclastic-evaporitic unit in between. Their ages range from Anisian to basal Carnian (Middle Triassic to base of the Upper Triassic). The carbonate units represent ramps that evolved during the early thermal subsidence period which succeeded the first rift phase. Seven facies have been distinguished, representing shoals, tidal flats, organic buildups and lagoons, as well as a karst horizon in the lower carbonatic unit. Most of the carbonates were dolomitised. Three processes of dolomitization are invoked: mixing waters, penecontemporaneous seepage refluxion, and deep burial. The top of the Buntsandstein and the Muschelkalk facies are subdivided into two depositional sequences, including lowstand, transgressive and highstand systems tracts, with superimposed tectonic and eustatic controls

RELATION OF MINERALIZATION TO WALL-ROCK ALTERATION AND BRECCIATION, MASCOT JEFFERSON-CITY MISSISSIPPI-VALLEY-TYPE DISTRICT, TENNESSEE, 1994, Haynes F. M. , Keslr S. E. ,
This study was undertaken to assess the relation of Mississippi Valley-type mineralization to wall-rock alteration and brecciation in the Mascot-Jefferson City district, the largest part of the East Tennessee Mississippi Valley-type ore field. The main question of interest was whether the Mississippi Valley-type-forming brines created or greatly enlarged the breccia system that hosts the ore or whether the breccia system was a preexisting paleoaquifer that simply controlled movement of the mineralizing brines. A secondary, and closely related, question was whether brine-wall rock interaction deposited Mississippi Valley-type ore. The breccia system that hosts the East Tennessee ore field began as karst breccias which formed in the upper part of the Late Cambrian-Early Ordovician Knox Group during Middle Ordovician emergence. Brecciation, which was most common at the paleosurface and in a limestone-rich zone about 200 m below the surface, took place when limestone solution caused collapse of primary dolostone layers. Mississippi Valley-type mineralization, consisting of sphalerite and sparry dolomite, fills interstices in the breccias that formed in the limestone-rich part of the Knox Group. Ore is associated with ''recrystalline dolomite'' that replaced limestone and there is an inverse correlation between the original limestone and sphalerite abundance suggesting that the ore-forming fluids reacted strongly with limestone wall rock, possibly dissolving it where alteration was most intense. The assessment of a relation between alteration and Mississippi Valley-type mineralization was based on 3,533 surface drill holes covering the 110-km2 Mascot-Jefferson City district, each of which provided stratigraphic data and quantified estimates of mineralization intensity and alteration intensity. These data show clearly that as much as 50 percent of the limestone in the mineralized breccia section was lost over enormous areas that extend far beyond significant mineralization. The intensity of this effect clearly decreases downdip (toward the east), away from the probable source of meteoric karst-forming waters. These relations, combined with isotopic analyses and reaction path calculations, suggest that breccia formation and limestone dissolution took place during the original karst breccia formation. In contrast, later Mississippi Valley-type mineralization was associated with replacement of limestone by recrystalline dolomite. The main effect of dolomitization on the chemistry of the Mississippi Valley-type brines, an increase in their Ca/Mg ratio, would not cause sulfide precipitation. Thus, it appears unlikely that Mississippi Valley-type-forming brines created much of their ore-hosting breccias or that water-rock interaction was a major cause of Mississippi Valley-type ore deposition

Karstification without carbonic acid; bedrock dissolution by gypsum-driven dedolomitization, 1994, Bischoff Jl, Julia R, Shanks Wc, Rosenbauer Rj,
Aggressive karstification can take place where dolomite and gypsum are in contact with the same aquifer. Gypsum dissolution drives the precipitation of calcite, thus consuming carbonate ions released by dolomite. Lake Banyoles, in northeastern Spain, is a karst lake supplied by sublacustrine springs, and karstic collapse is occurring in the immediate vicinity of the lake. Lake water is dominated by Mg-Ca and SO 4 -HCO 3 , and is supersaturated with calcite that is actively accumulating in lake sediments. Water chemistry, sulfur isotope composition, local stratigraphy, and mass-balance modeling suggest that the primary karst-forming process at Lake Banyoles is dedolomitization of basement rocks driven by gypsum dissolution. Karstification takes place along the subsurface contact between the gypsiferous Beuda Formation and the dolomitic Perafita Formation. This process is here recognized for the first time to cause karstification on a large scale; this is significant because it proceeds without the addition of soil-generated carbonic acid. Gypsum-driven dedolomitization may be responsible for other karstic systems heretofore attributed to soil-generated carbonic acid

KARSTIFICATION WITHOUT CARBONIC-ACID - BEDROCK DISSOLUTION BY GYPSUM-DRIVEN DEDOLOMITIZATION, 1994, Bischoff Jl, Julia R, Shanks Wc, Rosenbauer Rj,
Aggressive karstification can take place where dolomite and gypsum are in contact with the same aquifer. Gypsum dissolution drives the precipitation of calcite, thus consuming carbonate ions released by dolomite. Lake Banyoles, in northeastern Spain, is a karst lake supplied by sublacustrine springs, and karstic collapse is occurring in the immediate vicinity of the lake. Lake water is dominated by Mg-Ca and SO4-HCO3, and is supersaturated with calcite that is actively accumulating in lake sediments. Water chemistry, sulfur isotope composition, local stratigrapy, and mass-balance modeling suggest that the primary karst-forming process at Lake Banyoles is dedolomitization of basement rocks driven by gypsum dissolution. Karstification takes place along the subsurface contact between the gypsiferous Beuda Formation and the dolomitic Perafita Formation. This process is here recognized for the first time to cause karstification on a large scale; this is significant because it proceeds without the addition of soil-generated carbonic acid. Gypsum-driven dedolomitization may be responsible for other karstic systems heretofore attributed to soil-generated carbonic acid

Results 1 to 15 of 68
You probably didn't submit anything to search for