Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That coefficient of transmissivity; coefficient of transmissibility is an obsolete term replaced by the term transmissivity.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for epsilonproteobacteria (Keyword) returned 7 results for the whole karstbase:
Filamentous 'Epsilonproteobacteria' dominate microbial mats from sulfidic cave springs, 2003, Engel As, Lee N, Porter Ml, Stern La, Bennett Pc, Wagner M,
Hydrogen sulfide-rich groundwater discharges from springs into Lower Kane Cave, Wyoming, where microbial mats dominated by filamentous morphotypes are found. The full-cycle rRNA approach, including 16S rRNA gene retrieval and fluorescence in situ hybridization (FISH), was used to identify these filaments. The majority of the obtained 16S rRNA gene clones from the mats were affiliated with the 'Epsilonproteobacteria' and formed two distinct clusters, designated LKC group I and LKC group II, within this class. Group I was closely related to uncultured environmental clones from petroleum-contaminated groundwater, sulfidic springs, and sulfidic caves (97 to 99% sequence similarity), while group II formed a novel clade moderately related to deep-sea hydrothermal vent symbionts (90 to 94% sequence similarity). FISH with newly designed probes for both groups specifically stained filamentous bacteria within the mats. FISH-based quantification of the two filament groups in six different microbial mat samples from Lower Kane Cave showed that LKC group II dominated five of the six mat communities. This study further expands our perceptions of the diversity and geographic distribution of 'Epsilonproteobacteria' in extreme environments and demonstrates their biogeochemical importance in subterranean ecosystems

Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic 'Epsilonproteobacteria', 2004, Engel As, Porter Ml, Stern La, Quinlan S, Bennett Pc,
Filamentous microbial mats from three aphotic sulfidic springs in Lower Kane Cave. Wyoming. were assessed with regard to bacterial diversity, community structure, and ecosystem function using a 16S rDNA-based phylogenetic approach combined with elemental content and stable carbon isotope ratio analyses. The most prevalent mat morphotype consisted of while filament bundles, with low C:N ratios (3.5-5.4) and high sulfur content (16.1-51.2%). White filament bundles and two other mat morphotypes organic carbon isotope values (mean delta(13)C = -34.7parts per thousand: 1sigma = 3.6) consistent with chemolithoautotrophic carbon fixation from a dissolved inorganic carbon reservoir (cave water, mean delta(13)C = -7.47parts per thousand for two springs, n = 8). Bacterial diversity was as low overall in the clone libraries, and the most abundant taxonomic group was affiliated with the 'Epsilonproteobacteria' (68%) with other bacterial sequences affiliated with Gammaproteobacteria (12.2%), Betaproteobacteria (11.7%), Deltaproteobacteria (0.8%), and the Acidobacterium (5.6%) and Bacteriodetes/Chlorobi (1.7%) divisions. Six distinct epsilonproteobacterial taxonomic groups were identified from the microbial mats. Epsilonproteobacterial and bacterial group abundances and community structure shifted front the spring orifices downstream. corresponding to changes in dissolved sulfide and oxygen concentrations and metabolic requirements of certain bacterial groups. Most of the clone sequences for epsilonproteobacterial groups were retrieved from areas with high sulfide and low oxygen concentrations, whereas Thiothrix spp. and Thiobacillus spp. had higher retrieved clone abundances where conditions of low sulfide and high oxygen concentrations were measured. Genetic and metabolic diversity among the 'Epsilonproteobacteria' maximizes overall cave ecosystem function, and these organisms play a significant role in providing chemolithoautotrophic energy to the otherwise nutrient-poor cave habitat. Our results demonstrate that sulfur cycling supports subsurface ecosystem through chemolithoautotrophy and expand the evolutionary and ecological views of 'Epsilonproteobacteria' in terrestrial habitats. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier BY. All rights reserved

Microbial contributions to cave formation: New insights into sulfuric acid speleogenesis, 2004, Engel As, Stern La, Bennett Pc,
The sulfuric acid speleogenesis (SAS) model was introduced in the early 1970s from observations of Lower Kane Cave, Wyoming, and was proposed as a cave-enlargement process due to primarily H2S autoxidation to sulfuric acid and subaerial replacement of carbonate by gypsum. Here we present a reexamination of the SAS type locality in which we make use of uniquely applied geochemical and microbiological methods. Little H2S escapes to the cave atmosphere, or is lost by abiotic autoxidation, and instead the primary H2S loss mechanism is by subaqueous sulfur-oxidizing bacterial communities that consume H2S. Filamentous 'Epsilonproteobacteria' and Gammaproteobacteria, characterized by fluorescence in situ hybridization, colonize carbonate surfaces and generate sulfuric acid as a metabolic byproduct. The bacteria focus carbonate dissolution by locally depressing pH, compared to bulk cave waters near equilibrium or slightly supersaturated with calcite. These findings show that SAS occurs in subaqueous environments and potentially at much greater phreatic depths in carbonate aquifers, thereby offering new insights into the microbial roles in subsurface karstification

Niche differentiation among sulfur-oxidizing bacterial populations in cave waters, 2008, Jennifer L Macalady, Sharmishtha Dattagupta, Irene Schaperdoth, Daniel S Jones, Greg K Druschel And Danielle Eastman
The sulfidic Frasassi cave system affords a unique opportunity to investigate niche relationships among sulfur-oxidizing bacteria, including epsilonproteobacterial clades with no cultivated representatives. Oxygen and sulfide concentrations in the cave waters range over more than two orders of magnitude as a result of seasonally and spatially variable dilution of the sulfidic groundwater. A full-cycle rRNA approach was used to quantify dominant populations in biofilms collected in both diluted and undiluted zones. Sulfide concentration profiles within biofilms were obtained in situ using microelectrode voltammetry. Populations in rock-attached streamers depended on the sulfide/oxygen supply ratio of bulk water (r¼0.97; Po0.0001). Filamentous epsilonproteobacteria dominated at high sulfide to oxygen ratios (4150), whereas Thiothrix dominated at low ratios (o75). In contrast, Beggiatoa was the dominant group in biofilms at the sediment?water interface regardless of sulfide and oxygen concentrations or supply ratio. Our results highlight the versatility and ecological success of Beggiatoa in diffusion-controlled niches, and demonstrate that high sulfide/oxygen ratios in turbulent water are important for the growth of filamentous epsilonproteobacteria.

Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems, 2009, Porter M. L. , Summers Engel A. , Kane T. C. And Kinkle B. K.
Although ecosystems thriving in the absence of photosynthetic processes are no longer considered unique phenomena, we have yet to understand how these ecosystems are energetically sustained via chemosynthesis. Ecosystem energetics were measured in microbial mats from active sulfidic caves (Movile Cave, Romania; Frasassi Caves, Italy; Lower Kane Cave, Wyoming, USA; and Cesspool Cave, Virginia, USA) using radiotracer techniques. We also estimated bacterial diversity using 16S rRNA sequences to relate the productivity measurements to the composition of the microbial communities. All of the microbial communities investigated were dominated by chemolithoautotrophic productivity, with the highest rates from Movile Cave at 281 g C/m2/yr. Heterotrophic productivities were at least one order of magnitude less than autotrophy from all of the caves. We generated 414 new 16S rRNA gene sequences that represented 173 operational taxonomic units (OTUs) with 99% sequence similarity. Although 13% of these OTUs were found in more than one cave, the compositions of each community were significantly different from each other (P?0.001). Autotrophic productivity was positively correlated with overall species richness and with the number of bacterial OTUs affiliated with the Epsilonproteobacteria, a group known for sulfur cycling and chemolithoautotrophy. Higher rates of autotrophy were also strongly positively correlated to available metabolic energy sources, and specifically to dissolved sulfide concentrations. The relationship of autotrophic productivity and heterotrophic cycling rates to bacterial species richness can significantly impact the diversity of higher trophic levels in chemolithoautotrophically-based cave ecosystems, with the systems possessing the highest productivity supporting abundant and diverse macro-invertebrate communities.

Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems, 2009, Porter M. L. , Summers Engel A. , Kane T. C. , Kinkle B. K.

Although ecosystems thriving in the absence of photosynthetic processes are no longer considered unique phenomena, we have yet to understand how these ecosystems are energetically sustained via chemosynthesis. Ecosystem energetics were measured in microbial mats from active sulfidic caves (Movile Cave, Romania; Frasassi Caves, Italy; Lower Kane Cave, Wyoming, USA; and Cesspool Cave, Virginia, USA) using radiotracer techniques. We also estimated bacterial diversity using 16S rRNA sequences to relate the productivity measurements to the composition of the microbial communities. All of the microbial communities investigated were dominated by chemolithoautotrophic productivity, with the highest rates from Movile Cave at 281 g C/m2/yr. Heterotrophic productivities were at least one order of magnitude less than autotrophy from all of the caves. We generated 414 new 16S rRNA gene sequences that represented 173 operational taxonomic units (OTUs) with 99% sequence similarity. Although 13% of these OTUs were found in more than one cave, the compositions of each community were significantly different from each other (P≤0.001). Autotrophic productivity was positively correlated with overall species richness and with the number of bacterial OTUs affiliated with the Epsilonproteobacteria, a group known for sulfur cycling and chemolithoautotrophy. Higher rates of autotrophy were also strongly positively correlated to available metabolic energy sources, and specifically to dissolved sulfide concentrations. The relationship of autotrophic productivity and heterotrophic cycling rates to bacterial species richness can significantly impact the diversity of higher trophic levels in chemolithoautotrophically-based cave ecosystems, with the systems possessing the highest productivity supporting abundant and diverse macro-invertebrate communities.


Community Structure of Subsurface Biofilms in the Thermal Sulfidic Caves of Acquasanta Terme, Italy, 2010, Jones D. S. , Tobler D. J. , Schaperdoth I. , Mainiero M. , Macalady J. L.

We performed a microbial community analysis of biofilms inhabiting thermal (35 to 50°C) waters more than 60m below the ground surface near Acquasanta Terme, Italy. The groundwater hosting the biofilms has 400 to 830 mkM sulfide, <10 mkM O2, pH of 6.3 to 6.7, and specific conductivity of 8,500 to 10,500 mkS/cm. Based on the results of 16S rRNA gene cloning and fluorescent in situ hybridization (FISH), the biofilms have low species richness, and lithoautotrophic (or possibly mixotrophic) Gamma- and Epsilonproteobacteria are the principle biofilm architects. Deltaproteobacteria sequences retrieved from the biofilms have <90% 16S rRNA similarity to their closest relatives in public databases and may represent novel sulfate-reducing bacteria. The Acquasanta biofilms share few species in common with Frasassi cave biofilms (13°C, 80 km distant) but have a similar community structure, with representatives in the same major clades. The ecological success of Sulfurovumales-group Epsilonproteobacteria in the Acquasanta biofilms is consistent with previous observations of their dominance in sulfidic cave waters with turbulent water flow and high dissolved sulfide/oxygen ratios.


Results 1 to 7 of 7
You probably didn't submit anything to search for