Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That nival karst is alpine karst [1].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for equilibria (Keyword) returned 65 results for the whole karstbase:
Showing 1 to 15 of 65
Solutions, Minerals and Equilibria, 1965, Garrels R. M. , Christ C. L.

Hydrogeology of the Umm Er Radhuma aquifer, Saudi Arabia, with reference to fossil gradients, 1982, Bakiewicz W, Milne Dm, Noori M,
Much of North Africa and the Arabian peninsula, lying in the Saharan climate zone, are underlain by huge tabular sandstone and carbonate aquifers, ranging in age from Cambrian to Tertiary. These are often saturated with water of reasonable quality and form very valuable resources in an area often desperately short of water. The Palaeocene Umm Er Radhuma carbonate aquifer is one such formation which has been the subject of intensive recent investigation. The formation contains groundwater of a reasonable quality, has adequate transmission and storage characteristics and hence considerable potential for future development. The origin of the water in such aquifers is the subject of continuing controversy. It is not disputed that the water is moving under the influence of regional groundwater gradients but origins of these gradients are the subject of considerable argument. On the one hand, there are those who hold that the presently observed gradients are fossil remnants of conditions created by a much wetter climatic regime prevalent some thousands of years ago. Against this are those who maintain that the gradients, at least in part, reflect a present day system with groundwater discharge in approximate dynamic equilibrium with recharge. This paper examines the hydrogeology of a typical Middle Eastern formation of the disputed kind, the Umm Er Radhuma aquifer in Saudi Arabia, and, with the aid of analytical and numerical models, attempts to resolve the problem of the origin of the observed groundwater gradients and to discover the extent to which the past must influence present day plans for future development

Some remarks on phase equilibria of evaporites and other karstifiable rocks, 1986, Cigna A. A.

Genetic analysis of evolutionary processes, 1987, Wilkens Horst
Epigean and cave populations of A. fasciatus (Characidae, Pisces) differ in a series of morphological physiological, and ethological features. The interfertility of these populations made possible a genetic analysis of organs characteristic of interspecific divergence. The study of the regressive organs "eye" and "melanophore system" on the one hand and that of the constructively improved "gustatory equipment and feeding behaviour" on the other yielded identical principles of genetic manifestation: (1) All features have a polygenic basis with an at least di- to hexahybrid inheritance. (2) All polygenes have the same amount of expressivity. (3) After recombination of a minimum number of genes, discontinuous distributions (threshold effects) develop. (4) All features are independently inherited. (5) The genes responsible for a feature are unspecific. In the case of the eye this means that no "lens-" or "retinagenes" are analyzed; due to developmentally physiological interdependence within complex structures, only so-called "eye-genes" have as yet been described. Because of the developmentally physiological interdependence of complex organs, the process of reduction proceeds as a diminution in size, that of constructive evolution as enlargement. In both cases different allometric correlations of the single structures can be found. The convergent reduction of eyes in cave animals is caused by the loss of stabilizing selection which normally keeps the eye in its appropriate adapted form. It is not directional selection pressure, like f. ex. energy economy, but mutation pressure that causes eye reduction. By this, random mutations, which are mostly of deleterious character, are accumulated. The principles of regressive evolution are not restricted to the development of cave species. The absence of stabilizing selection regularly occurs during transitional evolutionary phases. These are f. ex. initial stages of speciation which may be observed when biotopes with little or no interspecific competition are colonized by an invader. Genotypic and phenotypic variability now arise and equilibria become punctuated, because stabilizing selection for a specific ecological niche which has once been acquired by the invading species is no longer acting. Examples include the evolution of species flocks in geologically young lakes or oceanic islands. Rapidly increasing variability now secondarily provides the material for directional selection which radiates such species into vacant niches. Genetic threshold effects as described above may accelerate this process. Variability will finally become lower again under the influence of inter- and intraspecific competition. A new equilibrium is attained.

Preliminary Assment of the Solution Equilibria of Sulphur RIver, Parker Cave, Kentucky, 1988, Roy, W. R.

Groundwater chemistry and cation budgets of tropical karst outcrops, Peninsular Malaysia, I. Calcium and magnesium, 1989, Crowther J,
The discharge and chemical properties of 217 autogenic groundwaters were monitored over a 1-yr period in the tower karsts of central Selangor and the Kinta Valley, and in the Setul Boundary Range. Because of differences in soil PCO2, calcium concentrations are significantly higher in the Boundary Range (mean, 82.5 mg l-1) than in the tower karst terrain (44.6 mg l-1). Local differences in both source area PCO2 and amounts of secondary deposition underground cause marked intersite variability, particularly in the tower karst. Dilution occurs during flood peaks in certain conduit and cave stream waters. Generally, however, calcium correlates positively with discharge, since the amount of secondary deposition per unit volume of water decreases at higher flows. Magnesium concentrations and Mg:Ca Mg ratios of groundwaters are strongly influenced by bedrock composition, though bedrock heterogeneity and the kinetics and equilibria of carbonate dissolution reactions preclude extremely low or high Mg:Ca Mg values. Net chemical denudation rates range from 56.6 to 70.9 m3km2yr-1.The results are considered in relation to cation fluxes in surface runoff, soil throughflow and nutrient cycling. Preliminary calcium and magnesium budgets show that (1) dissolutional activity is largely confined to the near-surface zone; and (2) the annual uptake of calcium and magnesium by tropical limestone forests is similar in magnitude to the net solute output in groundwaters

Sr isotope study of vein and cave calcites from southern Israel, 1990, Avigour A, Magaritz M, Issar A, Dodson Mh,
The strontium isotope compositions of secondary calcites from the Negev, southern Israel, were compared to those of the marine carbonate host rocks, which range in age from Triassic to Eocene, in order to understand fluid source and migration through fracture systems in dominantly carbonate strata. The Sr isotopes of these calcite clusters are divided into two groups: (1) calcites with 87Sr/86Sr values greater than those of the host carbonates; and (2) calcites with 87Sr/86Sr values close to the values of the host carbonate. 1. (1) These secondary calcites were found on the main tectonic lines of the Negev (faults and fold axes) and are enriched in 87Sr (87Sr/86Sr = 0.707709-0.709151) relative to the marine carbonate country rocks (87Sr/86Sr = 0.707251-0.70755, with one exception). These calcites are associated or crossed by thin veins filled by Fe- and Mn-oxides.2. (2) Secondary calcites with 87Sr/86Sr values close to those of the marine carbonate country rocks (0.7073-0.7077) are found in karstic caves and veins, and are located in sites which are not on the major faults and fold axes. These calcites are not crossed by Fe- and Mn-oxides.The isotopic results indicate that the solutions from which the secondary minerals of the first group precipitated were not in isotopic equilibrium with the marine host rocks. The possible source of the precipitating solutions can be either surface rain descending through the fault system or ascending groundwaters from the deep Nubian aquifer (Paleozoic to Early Cretaceous in age). In both cases there would be a limited interaction with the host sandstone rock which usually is depleted in Sr. The similarity of the 87Sr/86Sr values to those of the host rocks in the second group suggests that the main source of Sr in these calcite crystals was from the dissolution of the marine carbonate country rocks by rain- and flood waters

KINETIC ENRICHMENT OF STABLE ISOTOPES IN CRYOGENIC CALCITES, 1992, Clark Id, Lauriol B,
The C-13 and O-18 contents of cryogenic calcites formed by expulsion during the freezing of bicarbonate groundwaters are examined. Samples from karst caves within the permafrost region of northern Yukon, Canada, have deltaC-13-values as high as 17.0 parts per thousand, representing the most isotopically enriched freshwater carbonates yet reported. To account for such enrichments, calcium bicarbonate solutions were frozen and sublimated under controlled laboratory conditions. The rapid rate of reaction is shown to effectively preclude isotopic equilibration during bicarbonate dehydration, resulting in a kinetic partitioning of C-13 between CO2 and CaCO3. We find a value of 31.2 1.5 parts per thousand for 1000ln13alpha(KIE)(13alpha(KIE) = 1.032), which is considerably greater than the equilibrium fractionation factor (13epsilon(CaCO3-CO2)) of 10.3 parts per thousand at 0-degrees-C. This kinetic isotope effect (KIE) represents the ratio of the absolute reaction rate constants (13k(d)/12k(d)) for the two isotopic species during the dehydration of dissolved bicarbonate. Similar results for deltaO-18-values confirm that the reaction proceeds without isotope exchange. The KIE of O-18 is determined to be 1.006 for this reaction at 0-degrees-C. These data are compared with the KIE which occurs during the reverse reaction: CO2 hydroxylation by reaction with OH- in hyperalkaline waters

DISSOLUTION OF ARAGONITE-STRONTIANITE SOLID-SOLUTIONS IN NONSTOICHIOMETRIC SR(HCO3)2-CA(HCO3)2-CO2-H2O SOLUTIONS, 1992, Plummer L. N. , Busenberg E. , Glynn P. D. , Blum A. E. ,
Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated nonstoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25-degrees-C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer approximately 60 angstrom on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer approximately 25 angstrom (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a nonstoichiometric surface reactive zone significantly decreases dissolution rates

A High-Resolution Record of Holocene Climate Change in Speleothem Calcite from Cold Water Cave, Northeast Iowa, 1992, Dorale Ja, Gonzalez La, Reagan Mk, Pickett Da, Murrell Mt, Baker Rg,
High-precision uranium-thorium mass spectrometric chronology and 18O-13C isotopic analysis of speleothem calcite from Cold Water Cave in northeast Iowa have been used to chart mid-Holocene climate change. Significant shifts in [dagger]18O and [dagger]13C isotopic values coincide with well-documented Holocene vegetation changes. Temperature estimates based on 18O/16O ratios suggest that the climate warmed rapidly by about 3{degrees}C at 5900 years before present and then cooled by 4{degrees}C at 3600 years before present. Initiation of a gradual increase in [dagger]13C at 5900 years before present suggests that turnover of the forest soil biomass was slow and that equilibrium with prairie vegetation was not attained by 3600 years before present

MATHEMATICAL-MODELING OF CATCHMENT MORPHOLOGY IN THE KARST OF GUIZHOU, CHINA, 1992, Ming T. ,
This paper establishes statistical relationships describing the morphology of three contrasting drainage areas in the karst plateau of Guizhou. A landscape model proposed takes as its basis a two-tiered morphology: an upper tier of peaks and cols which maintains a dynamic equilibrium; and a lower tier defined by depression or valley bases which can evolve differentially in time and space. Thus equilibrium and evolutionary processes coexist in this type of karst landscape within the same timespan. The evlution of subcatchments is shown to be not necessarily the same as that of the total catchment because of tectonic factors

The kinetics of the reaction CO2?>H? as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3, 1996, Dreybrodt W, Lauckner J, Liu Zh, Svensson U, Buhmann D,
Dissolution of CaCO3 in the system H2O-CO2-CaCO3 is controlled by three rate-determining processes: The kinetics of dissolution at the mineral surface, mass transport by diffusion, and the slow kinetics of the reaction H2O CO2 = H HCO3-. A theoretical model of Buhmann and Dreybrodt (1985a,b) predicts that the dissolution rates depend critically on the ratio V/A of the volume V of the solution and the surface area A of the reacting mineral. Experimental data verifying these predictions for stagnant solutions have been already obtained in the range 0.01 cm < V/A < 0.1 cm. We have performed measurements of dissolution rates in a porous medium of sized CaCO3 particles for V/A in the range of 2 . 10(-4) cm and 0.01 cm in a system closed with respect to CO2 using solutions pre-equilibrated with an initial partial pressure of CO2 of 1 . 10(-2) and 5 . 10(-2) atm. The results are in satisfactory agreement with the theoretical predictions and show that especially for V/A < 10(-3) cm dissolution is controlled entirely by conversion of CO2 into H and HCO3-, whereas in the range from 10(-3) cm up to 10(-1) cm both CO2-conversion and molecular diffusion are the rate controlling processes. This is corroborated by performing dissolution experiments using 0.6 mu molar solutions of carbonic anhydrase, an enzyme enhancing the CO2-conversion rates by several orders of magnitude. In these experiments CO2 conversion is no longer rate limiting and consequently the dissolution rates of CaCO3 increase significantly. We have also performed batch experiments at various initial pressures of CO2 by stirring sized calcite particles in a solution with V/A = 0.6 cm and V/A = 0.038 cm. These data also clearly show the influence of CO2-conversion on the dissolution rates. In all experiments inhibition of dissolution occurs close to equilibrium. Therefore, the theoretical predictions are valid for concentrations c less than or equal to 0.9 c(eq). Summarising we find good agreement between experimental and theoretically predicted dissolution rates. Therefore, the theoretical model can be used with confidence to find reliable dissolution rates from the chemical composition of a solution for a wide field of geological applications

Elevated and variable values of 13C in speleothems in a British cave system, 1997, Baker A, Ito E, Smart Pl, Mcewan Rf,
[delta] 13C isotope variations in speleothems have been investigated for samples from the British Isles, where plants which use the Hatch-Slack or C4 photosynthetic pathway are not present. The range of [delta] 13C expected in speleothem carbonate formed in isotopic equilibrium with soil CO2 derived from the overlying C3 vegetation should thus fall in the range -12 to -6[per mille sign]. Forty-one actively growing speleothem samples from low-discharge sites were analysed from Stump Cross Caverns, Yorkshire, England. Ten percent have [delta] 13C greater than -6%. In addition, a large range of [delta] 13C was observed (-8.06 1.38[per mille sign], a 1 [sigma] variability of 17%), with adjacent samples having [delta] 13C differing by a maximum of 4.74[per mille sign]. Similar findings were obtained from a review of analyses of late Quaternary speleothem samples from the British Isles, with 75% of flowstone samples and 57% of high-flow stalagmite samples exhibiting elevated [delta] 13C. Three possible processes are proposed as possible causes of elevated [delta] 13C in speleothems. Firstly, fractionation may occur between the stalactite and stalagmite due to evaporation or degassing. Secondly, degassing of the groundwaters may have occurred within the aquifer before reaching the cave void, allowing release of some CO2 from the water whilst remaining saturated in calcium. Finally, the elevated [delta] 13C may be due to short water residence times in the soil, such that equilibrium between soil water and soil CO2 is not reached. Evidence presented here demonstrates that any one of these mechanisms may be important in the karst areas of the British Isles. Caution is needed before interpreting the [delta] 13C signal within speleothems in terms of palaeovegetation

Mixed transport reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst, 1997, Raines M. A. , Dewers T. A. ,
Experiments with gypsum in aqueous solutions at 25 degrees C, low ionic strengths, and a range of saturation states indicate a mixed surface reaction and diffusional transport control of gypsum dissolution kinetics. Dissolution rates were determined in a mixed flow/rotating disc reactor operating under steady-state conditions, in which polished gypsum discs were rotated at constant speed and reactant solutions were continuously fed into the reactor. Rates increase with velocity of spin under laminar conditions (low rates of spin), but increase asymptotically to a constant rate as turbulent conditions develop with increasing spin velocity, experiencing a small jump in magnitude across the laminar-turbulent transition. A Linear dependence of rates on the square root of spin velocity in the laminar regime is consistent with rates being limited by transport through a hydrodynamic boundary layer. The increase in rate with onset of turbulence accompanies a near discontinuous drop in hydrodynamic boundary layer thickness across the transition. A relative independence of rates on spinning velocity in the turbulent regime plus a nonlinear dependence of rates on saturation state are factors consistent with surface reaction control. Together these behaviors implicate a 'mixed' transport and reaction control of gypsum dissolution kinetics. A rate law which combines both kinetic mechanisms and can reproduce experimental results under laminar flow conditions is proposed as follows: R = k(t) {1 - Omega(b)() zeta [1 - (1 2(1 - Omega(b)())(1/2)]} where k(t) is the rate coefficient for transport control, and Omega(b)() is the mean ionic saturation state of the bulk fluid. The dimensionless parameter zeta(=Dm(eq)()/2 delta k() where m(eq)() = mean ionic molal equilibrium concentration, D is the diffusion coefficient through the hydrodynamic boundary layer, delta equals the boundary layer thickness and k() is the rate constant for surface reaction control) indicates which process, transport or surface reaction, dominates, and is sensitive to the hydrodynamic conditions in the reactor. For the range of conditions used in our experiments, zeta varies from about 1.4 to 4.5. Rates of gypsum dissolution were also determined in situ in a cavern system in the Permian Blaine Formation, southwestern Oklahoma. Although the flow conditions in the caverns were not determinable, there is good agreement between lab- and field-determined rates in that field rate magnitudes lie within a range of rates determined experimentally under zero to low spin velocities A numerical model coupling fluid flow and gypsum reaction in an idealized circular conduit is used to estimate the distance which undersaturated solutions will travel into small incipient conduits before saturation is achieved. Simulations of conduit wall dissolution showed-member behaviors of conduit formation and surface denudation that depend on flow boundary conditions (constant discharge or constant hydraulic gradient and initial conduit radius. Surface-control of dissolution rates. which becomes more influential with higher fluid flow velocity, has the effect that rate decrease more slowly as saturation is approached than otherwise would occur if rates were controlled by transport alone. This has the effect that reactive solutions can penetrate much farther into gypsum-bearing karst conduits than heretofore thought possible, influencing timing and mechanism of karst development as well as stability of engineered structures above karst terrain

Influence of climatic parameters in karstic denudation, 1997, Gombert P. ,
Karstic denudation is empirically estimated by specific dissolution or geochemical balance calculations, which need a precise knowledge of the aquifer, or by mathematical expressions which only depend upon rainfall. It is in fact known that water inflow charged with CO2 is the main karstic agent. We propose a mathematical model called << Maximal Potential Dissolution >> (DMP) and based on efficient infiltration calculation, CO2 soil productivity and knowledge of the calcocarbonic equilibrium

Results 1 to 15 of 65
You probably didn't submit anything to search for