Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That tower karst, towerkarst, turmkarst is 1. a spectacular variety of karst landscape dominated by steep or vertical sided limestone towers each 30-300m high. by far the most extensive and best developed tower karst is the guangxi province of southern china. towers originate as residual cones and are then steepened by water table undercutting from surround alluviated plains. tectonic uplift matched by karst erosion then increases tower heights, but if uplift exceeds surface lowering the towers are raised to hillside locations and the landscape is rejuvenated to form a new generation of dolines and cone karst. many towers are riddled with relict caves at high levels, and with active caves through their bases [9]. 2. karst topography characterized by isolated residual limestone hills displaying numerous shapes (e.g., cone shaped, steep-sided) separated by areas of alluvium or other detrital sand; towers are generally forest-covered hills, and many have flat tops. they may form as isolated hills or in groups. 3. a type of karst topography, common in the tropics, in which the residual hills rise in steep-sided but flat-topped mounds (resembling towers) from intervening depressions or dolinas (sinkholes) [20]. synonyms: (french.) karst a tourelles, karst a tours; (german.) turmkarst, kegelkarst; (italian.) carsismo con forme residuali a torre; (spanish.) karst de torres; (turkish.) kuleli karst. see also cone karst; cupola karst; pinnacle karst; fengcong; fenglin.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for event water (Keyword) returned 6 results for the whole karstbase:
The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland, , Perrin J. , Jeannin P. Y. , Cornaton F. ,
SummarySolute concentration variations during flood events were investigated in a karst aquifer of the Swiss Jura. Observations were made at the spring, and at the three main subterraneous tributaries feeding the spring. A simple transient flow and transport numerical model was able to reproduce chemographs and hydrographs observed at the spring, as a result of a mixing of the concentration and discharge of the respective tributaries. Sensitivity analysis carried out with the model showed that it is possible to produce chemical variations at the spring even if all tributaries have constant (but different for each of them) solute concentrations. This process is called tributary mixing. The good match between observed and modelled curves indicate that, in the phreatic zone, tributary mixing is probably an important process that shapes spring chemographs. Chemical reactions and other mixing components (e.g. from low permeability volumes) have a limited influence.Dissolution-related (calcium, bicarbonate, specific conductance) and pollution-related parameters (nitrate, chloride, potassium) displayed slightly different behaviours: during moderate flood events, the former showed limited variations compared to the latter. During large flood events, both presented chemographs with significant changes. No significant event water participates in moderate flood events and tributary mixing will be the major process shaping chemographs. Variations are greater for parameters with higher spatial variability (e.g. pollution-related). Whereas for large flood events, the contribution of event water becomes significant and influences the chemographs of all the parameters. As a result, spring water vulnerability to an accidental pollution is low during moderate flood events and under base flow conditions. It strongly increases during large flood events, because event water contributes to the spring discharge

Sinkholes in karst mining areas in China and some methods of prevention, 1999, Li G. Y. , Zhou W. F. ,
Mining of coal, lead and zinc, gold, and iron ore deposits in karst areas has been closely associated with sinkholes in China. Surface collapse causes an increase in mine water drainage and the possibility of major water inflow from karst aquifers, which threatens the environment in mining areas and endangers the mine safety. A combination of factors including soil weight, buoyancy, suffusion process and vacuum suction can contribute to the sinkhole formation. The key measures to prevent sinkholes in mining areas are to control the amount of mine drainage, reduce water level fluctuation, seal-off karst conduits and subsurface cavities in the overlying soil, prevent water inflow, and/or to increase gas pressure in the karst conduits. (C) 1999 Elsevier Science B.V. All rights reserved

Inverse modeling of the hydrological and the hydrochemical behavior of hydrosystems: Characterization of karst system functioning, 2001, Pinault J. L. , Plagnes V. , Aquilina L. , Bakalowicz M. ,
Inverse modeling of mass transfer characterizes the dynamic processes affecting the function of karst systems and can be used to identify karst properties. An inverse model is proposed to calculate unit hydrographs as well as impulse response of fluxes from rainfall-runoff or rainfall-flux data, the purpose of which is hydrograph separation. Contrary to what hydrologists have been doing for years, hydrograph separation is carried out by using transfer functions in their entirety, which enables accurate separation of fluxes, as was explained in the companion paper [Pinault et al., this issue]. The unit hydrograph as well as impulse response of fluxes is decomposed into a quick and a slow component, and, consequently, the effective rainfall is decomposed into two parts, one contributing to the quick flow (or flux) and the other contributing to the slow flow generation. This approach is applied to seven French karstic aquifers located on the Larzac plateau in the Grands Causses area (in the south of France). Both hydrodynamical and hydrogeochemical data have been recorded from these springs over several hydrological cycles. For modeling purposes, karst properties can be represented by the impulse responses of flow and flux of dissolved species. The heterogeneity of aquifers is translated to time-modulated flow and transport at the outlet. Monitoring these fluxes enables the evaluation of slow and quick components in the hydrograph. The quick component refers to the 'flush flow' effect and results from fast infiltration in the karst conduit network when connection is established between the infiltration and phreatic zones, inducing an increase in water head. This component reflects flood events where flow behavior is nonlinear and is described by a very short transfer function, which increases and decreases according to water head. The slow component consists of slow and fast infiltration, underground runoff, storage in annex-to-drain systems, and discharge from the saturated zone. These components can be further subdivided by measuring chemical responses at the karst outlet. Using Such natural tracers enables the slow component of the unit hydrograph to be separated into preevent water, i.e., water of the reservoir and event water, i.e., water whose origin can be related to a particular rainfall event. These measurements can be used to determine the rate of water renewal. Since the preevent water hydrograph is produced by stored water when pushed by a rainfall event and the event water hydrograph reflects rainwater transfer, separating the two components can yield insights into the characteristics of karst aquifers, the modes of infiltration, and the mechanisms involved in karstification, as well as the degree of organization of the aquifer

Dynamic hydrologic and geochemical response in a perennial karst spring, 2004, Winston W. E. , Criss R. E. ,
Storms induce rapid variations in the discharge, specific conductivity, and temperature of a perennial karst spring in eastern Missouri that are followed by gradual return to normal conditions. These dynamics reflect the varying relative proportions of 'base flow'' and 'event water'' components that have different delta(18)O signatures, solute concentrations, flow paths, and transport timescales, which combine with other transport impedances to govern the temporal behavior of water quality parameters. A new Darcian model accurately reproduces the hydrograph and its separated components, defines the time constants that govern their physical and geochemical responses, and affords a quantitative method to investigate these linked behaviors. Analysis of 58 storm events reveals an average pulse time constant of 0.4 0.2 days that is much shorter than the similar to2 year residence time of water in the aquifer derived from long-term delta(18)O variations. For individual pulses this short time constant for total flow approximates that of the base flow component, but the time constant for the event water component is even shorter. The same model also approximates other storm-induced variations and indicates they are all triggered at the same time but respond according to different time constants of 1.6 0.2 days for oxygen isotopes, 1.6 0.9 days for temperature, and 3.4 1.0 days for specific conductivity and major ion concentrations. The time constant for discharge decreases somewhat with greater peak flows, while the geochemical time constants increase

Estimation of denitrification potential in a karst aquifer using the N-15 and O-18 isotopes of NO3-, 2005, Einsiedl F, Maloszewski P, Stichler W,
A confined aquifer in the Malm Karst of the Franconian Alb, South Germany was investigated in order to understand the role of the vadose zone in denitrifiaction processes. The concentrations of chemical tracers Sr2 and Cl- and concentrations of stable isotope O-18 were measured in spring water and precipitation during storm events. Based on these measurements a conceptual model for runoff was constructed. The results indicate that pre-event water, already stored in the system at the beginning of the event, flows downslope on vertical and lateral preferential flow paths. Chemical tracers used in a mixing model for hydrograph separation have shown that the pre-event water contribution is up to 30%. Applying this information to a conceptual runoff generation model, the values of delta(15)N and delta(18)O in nitrate could be calculated. Field observations showed the occurence of significant microbial denitrification processes above the soil/ bedrock interface before nitrate percolates through to the deeper horizon of the vadose zone. The source of nitrate could be determined and denitrification processes were calculated. Assuming that the nitrate reduction follows a Rayleigh process one could approximate a nitrate input concentration of about 170 mg/l and a residual nitrate concentration of only about 15%. The results of the chemical and isotopic tracers postulate fertilizers as nitrate source with some influence of atmospheric nitrate. The combined application of hydrograph separation and determination of isotope values in delta(15)N and delta(18)O of nitrate lead to an improved understanding of microbial processes (nitrification, denitrification) in dynamic systems

Physical Structure of the Epikarst, 2013, Jones, William K.

Epikarst is a weathered zone of enhanced porosity on or near the surface or at the soil/bedrock contact of many karst landscapes. The epikarst is essentially the upper boundary of a karst system but is also a reaction chamber where many organics accumulate and react with the percolating water. The epikarst stores and directs percolating recharge waters to the underlying karst aquifers. Epikarst permeability decreases with depth below the surface. The epikarst may function as a perched aquifer with a saturated zone that transmits water laterally for some distance until it drains slowly through fractures or rapidly at shaft drains or dolines. Stress-release and physical weathering as well as chemical dissolution play a role in epikarst development. Epikarst may be found on freshly exposed carbonates although epikarst that develops below a soil cover should form at a faster rate due to increased carbon dioxide produced by vegetation. The accumulation of soil within the fractures may create plugs that retard the downward movement of percolating water and creates a reservoir rich in organic material. The thickness of the epikarst zone typically ranges from a few meters to 15 meters, but vertical weathering of joints may be much deeper and lead to a “stone forest” type of landscape. Some dolines are hydrologically connected directly to the epikarst while other dolines may drain more directly to the deeper conduit aquifer and represent a “hole” in the epikarst. water stored in the epikarst may be lost to evapotranspiration, move rapidly down vertical shafts or larger joints, or drain out slowly through the soil infillings and small fractures. Much of the water pushed from the epikarst during storms is older water from storage that is displaced by the new event water.

Results 1 to 6 of 6
You probably didn't submit anything to search for