Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That lodgement till is glacial till deposited from slowly melting ice at the base of a glacier [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for ferricrete (Keyword) returned 4 results for the whole karstbase:
The induration process of goethitic oxisols on peridotites in New Caledonia: A singular plinthite-type process of induration, 1996, Podwojewski P. , Bourdon E. ,
The strong chemical weathering of peridotites in New Caledonia generates goethitic oxisols acid a karstic relief. A rapid decrease of a water-table at the bottom of a doline leads to a rapid, massive and continuous induration of iron oxide at the interface between an oxidizing and a reducing environment. Goethite precipitates in a reticular network, pseudomorphs after plant cells and could be associated with lepidocrocite, siderite and rhodochrosite. These hardpans could not be strictly considered as ferricretes

A tentative classification of paleoweathering formations based on geomorphological criteria, 1996, Battiauqueney Y,
A geomorphological classification is proposed that emphasizes the usefulness of paleoweathering records in any reconstruction of past landscapes. Four main paleoweathering records are recognized: 1. Paleoweathering formations buried beneath a sedimentary or volcanic cover. Most of them are saprolites, sometimes with preserved overlying soils. Ages range from Archean to late Cenozoic times; 2. Paleoweathering formations trapped in karst: some of them have buried pre-existent karst landforms, others have developed simultaneously with the subjacent karst; 3. Relict paleoweathering formations: although inherited, they belong to the present landscape. Some of them are indurated (duricrusts, silcretes, ferricretes,...); others are not and owe their preservation to a stable morphotectonic environment; 4. Polyphased weathering mantles: weathering has taken place in changing geochemical conditions. After examples of each type are provided, the paper considers the relations between chemical weathering and landform development. The climatic significance of paleoweathering formations is discussed. Some remote morphogenic systems have no present equivalent. It is doubtful that chemical weathering alone might lead to widespread planation surfaces. Moreover, classical theories based on sea-level and rivers as the main factors of erosion are not really adequate to explain the observed landscapes

Laterisation on limestones of the Tertiary Wankoe Formation and its relationship to the African Surface, southern Cape, South Africa, 1999, Marker M. E. , Holmes P. J. ,
The existence of erosion surfaces has long been recognised as a macroscale feature of the southern African landscape. Evidence is presented here to demonstrate that laterisation as a soil process affected the calcareous Tertiary Wankoe Formation of the southern Cape. Remnants of the Tertiary African Surface along the southern Cape Coastal Plateau are characterised by deep weathering mantles capped by duricrusts of laterite and silcrete. The limestones have been assumed to be the coastal equivalent of the inland African Surface. Through field mapping of the study locality discussed below, and through sedimentological and geochemical analysis (X-ray fluorescence spectrometry) of selected samples, it was possible to demonstrate that the laterisation process also affected these older Tertiary Limestones. However, the evidence is rarely preserved, and nowhere have complete, intact laterised profiles survived. More often, strong weathering resulted in case-hardening of the topography and the formation of dense calcrete. The implication from this coastal locality is that laterisation as a soil forming process extended from the Mid Tertiary Period until the early Pleistocene Period within this particular sub-region of southern Africa. The significance of this locality within the broader context of the African Surface remnants which occur from the Cape Peninsula in the west to the Knysna area in the east, as well as the palaeoenvironmental significance of laterisation on a substrate which is not conducive to this type of weathering, are also examined. (C) 1999 Elsevier Science B.V. All rights reserved

Continental France and Belgium during the early Cretaceous: paleoweatherings and paleolandforms, 2006, Thiry Medard, Quesnel Florence, Yans Johan, Wyns Robert, Vergari Anne, Theveniaut Herve, Simoncoincon Regine, Ricordel Caroline, Moreau Marie Gabrielle, Giot Denis, Dupuis Christian, Bruxelles Laurent, Barbarand
During the early Cretaceous, successive tectonic phases and several sea level falls resulted in the emersion of the main part of western Europe and the development of thick 'lateritic' weathering. This long period of continental evolution ended with the Upper Cretaceous transgressions. During this period, the exposed lands displayed a mosaic of diverse morphologies and weathered landscapes. Bauxites are the most spectacular paleoweathering features, known for long in southern France. Recently, new residual outcrops have been identified, trapped in the karstic depressions of the Grands Causses. Other bauxitic formations, containing gibbsite, have also been recognised, occurring with the Clay-with-Jurassic-cherts in the southeastern border of the Paris Basin. These bauxitic formations overlay Jurassic limestone and are buried beneath Upper Cretaceous marine deposits. The recognition of bauxites up north into the southern Paris Basin significantly widens the extension of the Lower Cretaceous bauxitic paleolandscapes. On the Hercynian basements thick kaolinitic weathering mantles occur. They have been classically ascribed to the Tertiary. The first datings of these in situ paleosoils, by means of paleomagnetism and/or radiogenic isotopes, record especially early Cretaceous ages. This is the case for the 'Siderolithic' formations on the edges of the French Massif Central, but also for the kaolinitic profiles in the Belgian Ardennes. In the Flanders, the Brabant basement is deeply kaolinised beneath the Upper Cretaceous cover. These paleosoils show polygenetic evolutions. The relief of these basement paleolandscapes may have been significant. There where probably high scarps (often of tectonic origin) reaching 200 m in elevation or beyond, as well as wide surfaces with inselbergs, as in the present day landscapes of tropical Africa and South America. On the Jurassic limestone platforms occur diverse kaolinitic and ferruginous weathering products. Around the Paris Basin they show various facies, ranging from kaolinitic saprolites to ferricretes. Due to the lack of sedimentary cover, the age of these ferruginous and kaolinitic weathering products has been debated for long, most often allocated to the Siderolithic sensu lato (Eocene-Oligocene). Recent datings by paleomagnetism have enabled to date them (Borne de Fer in eastern Paris Basin) back also to the early Cretaceous (130 {} 10 Ma). These wide limestone plateaus show karstified paleolandforms, such as vast closed and flat depressions broken by conical buttes, but also deep sinkholes in the higher areas of the plateaus and piedmonts. The depth of the karst hollows may be indicative of the range of relative paleoelevations. Dissolution holes display seldom contemporaneous karst fillings, thus implying that the karstland had not a thick weathering cover or that this cover had been stripped off before or by the late Cretaceous transgression. Nevertheless, some areas, especially above chert-bearing Jurassic limestone or marl, show weathering products trapped in the karst features or as a thick weathering mantle. In the Paris Basin, the Wealden gutter looked like a wide floodplain in which fluvio-deltaic sands and clays were deposited and on which paleosoils developed during times of non-deposition. The edges of the gutter were shaped as piedmonts linked up with the upstream basement areas. The rivers flowing down to the plain deposited lobes of coarse fluvial sands and conglomerates. The intensity of the weathering, the thickness of the profiles and their maturation are directly dependent on the duration of the emersion and the topographic location relative to the gutter. Near the axis of the gutter, where emersion was of limited duration, the paleoweathering features are restricted to rubefaction and argillization of the Lower Cretaceous marine formations. On the other hand, on the borders of the basin and on the Hercynian basement, where emersion was of longer duration, the weathering profiles are thicker and more intensively developed. The inventory of the Lower Cretaceous paleoweathering features shows the complexity of the continental history of this period. Moreover, the preserved weathering products are only a part of this long lasting period, all the aspects relative to erosion phases are still more difficult to prove and to quantify. In this domain, apatite fission tracks thermochronology (AFTT) can be helpful to estimate the order of magnitude of denudation. Residual testimonies and subsequent transgressions may enable to estimate relative elevations, but in return, we presently have no reliable tool to estimate absolute paleoelevations. In the work presented here, the inventory enabled to draw a continental paleogeographic map showing the nature of the weathering mantles and the paleolandscape features, just as paleoenvironments and paleobathymetry presently appear on marine paleogeographic maps. For the future, the challenge is to make progress in dating the paleoweathering profiles and especially in the resolution of these datings, in order to correlate precisely the continental records with the different events which trigger them (eustatism, climate, regional and global geodynamics). The final goal will be to build up a stratigraphic scale of the 'continental geodynamic and climatic events' in parallel with 'sequential stratigraphy' in the marine realm

Results 1 to 4 of 4
You probably didn't submit anything to search for