Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That intermontane basin is a basin lying between two mountain ranges [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for field-measurements (Keyword) returned 10 results for the whole karstbase:
GEOCHEMICALLY CONTROLLED CALCITE PRECIPITATION BY CO2 OUTGASSING - FIELD-MEASUREMENTS OF PRECIPITATION RATES IN COMPARISON TO THEORETICAL PREDICTIONS, 1992, Dreybrodt W, Buhmann D, Michaelis J, Usdowski E,

ESTIMATION OF PREFERENTIAL MOVEMENT OF BROMIDE TRACER UNDER FIELD CONDITIONS, 1994, Jabro J. D. , Lotse E. G. , Fritton D. D. , Baker D. E. ,
Leaching of agricultural chemicals from the root and vadose zones into groundwater is an important environmental concern. To procure a better understanding of the movement and transport of agricultural chemicals through the soil profile, a field research study was conducted to estimate bromide leaching losses under saturated conditions where preferential flow is occurring. The field data were then used to evaluate the LEACHM model. Eighteen double-ring infiltrometers were used to apply a pulse (100 mm depth) of bromide tracer on two previously saturated soils located in a karst region of southeastern Pennsylvania. Internal drainage over the next seven days resulted in nearly 51 % of the applied Br- being leached to a depth below 0.80 m. The LEACHM model was used to simulate the amount of bromide leached in each infiltrometer. The model predicted, accurately, an average of 46% of the applied Br- leached below the 0.80 m depth. Mcan values of bromide concentration in the soil profile were predicted within two standard deviations of the measured mean for all depths except for the 0.20-0.40 m depth increment where the model overpredicted the bromide concentration. The model predictions of Br- leached were tested against field measurements using several statistical tests. The LEACHM model performed adequately under preferential flow conditions, perhaps because the infiltration rate at each site was used as a model input. This, actually, is some measure of the macropore flow process and suggests that simple models such as LEACHM can be used in the field, as long as a distribution of infiltration rates is used as an input

Recent flowstone growth rates: field measurements and comparison to theoretical results, 1995, Baker A. , Smart Pl. ,
The model of calcite precipitation kinetics of D. Buhmann and W. Dreybrodt, based on the rate laws of L.N. Plummer et al., is used to predict cave flowstone growth rates. These theoretically modelled growth rates are compared to actual growth rates of recent samples found in cave and mine sites in southwest England. A good agreement is found between modelled and actual growth rates within the 95% confidence level of the determinations, although in general modelled growth rates overestimate actual growth rate by between 2.4 and 4.7 times. Several reasons for this overestimation are discussed, including uncertainties arising from the experimental data of L.N. Plummer et al., seasonal shut-off of water flow onto the flowstones and significant variations in the growth rate determining parameters during the period of flowstone growth. For one flowstone an underestimation of growth rate is observed and is explained by the presence of rimstone pools which pond water on the sample surface

HYDRODYNAMIC CONTROL OF INORGANIC CALCITE PRECIPITATION IN HUANGLONG RAVINE, CHINA - FIELD-MEASUREMENTS AND THEORETICAL PREDICTION OF DEPOSITION RATES, 1995, Liu Z. H. , Svensson U. , Dreybrodt W. , Yuan D. X. , Buhmann D. ,
Hydrochemical and hydrodynamical investigations are presented to explain tufa deposition rates along the flow path of the Huanglong Ravine, located in northwestern Sichuan province, China, on an altitude of about 3400 m asl. Due to outgassing of CO2 the mainly spring-fed stream exhibits, along a valley of 3.5 km, calcite precipitation rates up to a few mm/year. We have carried out in situ experiments to measure calcite deposition rates at rimstone dams, inside of pools and in the stream-bed. Simultaneously, the downstream evolution of water chemistry was investigated at nine locations with respect to Ca2 Mg2, Na, Cl-, SO42-, and alkalinity. Temperature, pH, and conductivity were measured in situ, while total hardness, Ca-T, and alkalinity have been determined immediately after sampling, performing standard titration methods. The water turned out to be of an almost pure Ca-Mg-HCO3 type. The degassing of CO2 causes high supersaturation with respect to calcite and due to calcite precipitation the Ca2 concentration decreases from 6 . 10(-3) mole/l upstream down to 2.5 . 10(-3) mole/l at the lower course. Small rectangular shaped tablets of pure marble were mounted under different flow regimes, i.e., at the dam sites with fast water flow as well as inside pools with still water. After the substrate samples had stayed in the water for a period of a few days, the deposition rates were measured by weight increase, up to several tens of milligrams. Although there were no differences in hydrochemistry, deposition rates in fast flowing water were higher by as much as a factor of four compared to still water, indicating a strong influence of hydrodynamics. While upstream rates amounted up to 5 mm/year, lower rates of about 1 mm/year were observed downstream. Inspection of the marble substrate surfaces by EDAX and SEM (scanning electron microscope) revealed authigeneously grown calcite crystals of about 10 mu m. Their shape and habit are indicative of a chemically controlled inorganic origin. By applying a mass transfer model for calcite precipitation taking into account the reaction rates at the surface given by Plummer et al. (1978), slow conversion of CO2 into H and HCO3-, and diffusional mass transport across a diffusion boundary layer, we have calculated the deposition rates from the hydrochemistry of the corresponding locations. The calculated rates agree within a factor of two with the experimental results. Our findings confirm former conclusions with respect to fast flow conditions: reasonable rates of calcite precipitation can be estimated in reducing the PWP-rate calculated from the chemical composition of the water by a factor of about ten, thus correcting for the influence of the diffusion boundary layer

The kinetics of the reaction CO2?>H? as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3, 1996, Dreybrodt W, Lauckner J, Liu Zh, Svensson U, Buhmann D,
Dissolution of CaCO3 in the system H2O-CO2-CaCO3 is controlled by three rate-determining processes: The kinetics of dissolution at the mineral surface, mass transport by diffusion, and the slow kinetics of the reaction H2O CO2 = H HCO3-. A theoretical model of Buhmann and Dreybrodt (1985a,b) predicts that the dissolution rates depend critically on the ratio V/A of the volume V of the solution and the surface area A of the reacting mineral. Experimental data verifying these predictions for stagnant solutions have been already obtained in the range 0.01 cm < V/A < 0.1 cm. We have performed measurements of dissolution rates in a porous medium of sized CaCO3 particles for V/A in the range of 2 . 10(-4) cm and 0.01 cm in a system closed with respect to CO2 using solutions pre-equilibrated with an initial partial pressure of CO2 of 1 . 10(-2) and 5 . 10(-2) atm. The results are in satisfactory agreement with the theoretical predictions and show that especially for V/A < 10(-3) cm dissolution is controlled entirely by conversion of CO2 into H and HCO3-, whereas in the range from 10(-3) cm up to 10(-1) cm both CO2-conversion and molecular diffusion are the rate controlling processes. This is corroborated by performing dissolution experiments using 0.6 mu molar solutions of carbonic anhydrase, an enzyme enhancing the CO2-conversion rates by several orders of magnitude. In these experiments CO2 conversion is no longer rate limiting and consequently the dissolution rates of CaCO3 increase significantly. We have also performed batch experiments at various initial pressures of CO2 by stirring sized calcite particles in a solution with V/A = 0.6 cm and V/A = 0.038 cm. These data also clearly show the influence of CO2-conversion on the dissolution rates. In all experiments inhibition of dissolution occurs close to equilibrium. Therefore, the theoretical predictions are valid for concentrations c less than or equal to 0.9 c(eq). Summarising we find good agreement between experimental and theoretically predicted dissolution rates. Therefore, the theoretical model can be used with confidence to find reliable dissolution rates from the chemical composition of a solution for a wide field of geological applications

Precipitation kinetics of calcite in the system CaCO3-H2O-CO2: The conversion to CO2 by the slow process H?->CO2? as a rate limiting step, 1997, Dreybrodt W, Eisenlohr L, Madry B, Ringer S,
Precipitation rates of CaCO3 from supersaturated solutions in the H2O - CO2 - CaCO3 system are controlled by three rate-determining processes: the kinetics of precipitation at the mineral surface, mass transport of the reaction species involved to and from the mineral surface, and the slow kinetics of the overall reaction HCO3- H --> CO2 H2O. A theoretical model by Buhmann and Dreybrodt (1985a,b) taking these processes into account predicts that, due to the slow kinetics of this reaction, precipitation rates to the surface of CaCO3 minerals depend critically on the ratio V/A of the volume V of the solution to the surface area A of the mineral in contact with it, for both laminar and turbulent flow. We have performed measurements of precipitation rates in a porous medium of sized particles of marble, limestone, and synthetic calcite, with V/A ratios ranging from 3.10(-4) to 1.2-10(-2) cm at 10 degrees C. Calcite was precipitated from supersaturated solutions with [Ca2] approximate to 4 mmol/L and an initial P-CO2 of 5.10(-3) or 1.10(-3) atm, respectively, using experimental conditions which prevented exchange of CO2 with the atmosphere, i.e., closed system. The results are in qualitative agreement with the theoretical predictions. Agreement with the observed data, however, is obtained by modifying the rate law of Plummer et al. (1978) to take into account surface-controlled inhibition effects. Experiments with supersaturated solutions containing carbonic anhydrase, an enzyme which enhances the conversion of HCO3- into CO2, yield rates increased by a factor of up to 15. This provides for the first time unambiguous experimental evidence that this reaction is rate limiting. We have also measured precipitation rates in batch experiments, stirring sized mineral particles in a solution with V/A ranging from 0.03 to 0.75 cm. These experiments also give clear evidence on the importance of the conversion of HCO3- into CO2 as rate limiting step. Taken together our experiments provide evidence that the theoretical model of Buhmann and Dreybrodt (1985a,b) can be used to predict reliable rates from the composition of CaHCO3- solutions with low ionic strength in many geologically relevant situations. Copyright (C) 1997 Elsevier Science Ltd

Special speleothems in cement-grouting tunnels and their implications of the atmospheric CO2 sink, 1998, Liu Z. H. , He D. B. ,
Based on the analyses and comparisons of water chemistry, stable carbon isotopes and deposition rates of speleothems, the authors found that there are two kinds of speleothems in the tunnels at the Wujiangdu Dam site, Guizhou, China, namely the CO2-outgassing type and the CO2-absorbing type. The former is natural, as observed in general karst caves, and the product of karst processes under natural conditions. The latter, however, is special, resulting from the carbonation of a cement-grouting curtain and concrete. Due to the quick absorption of CO2 from the surrounding atmosphere, evidenced by the low CO2 content in the air and the high deposition rate of speleothems (as high as 10 cm/a) in the tunnels, the contribution of the carbonation process to the sink of CO2 in the atmosphere is important tin the order of magnitude of 10(8) tons c/a) and should be taken into consideration in the study of the global carbon cycle because of the use of cement on a worldwide scale

Natural water softening processes by waterfall effects in karst areas, 2000, Zhang D. D. , Peart M. , Zhang Y. J. , Zhu A. , Cheng X. ,
The reduction of water hardness, which occurs at waterfalls on rivers in karst areas, is considered to be a result of the waterfall effects. These consist of aeration, jet-flow and low-pressure effects. Waterfall effects bring about two physical changes in river water: an increase in the air-water interface and turbulence. A series of experiments was designed and implemented in order to investigate whether these effects and associated physical changes may cause a reduction of water hardness. From an experiment involving the enlargement of interface area, the plot of air-water interface areas against conductivity revealed that the higher the air-water interface, the more rapidly conductance declines (and Ca2 is precipitated). A bubble producer was designed and used to simulate bubbles that are produced by aeration and low-pressure effects and a faster decline of water hardness was observed at the location with bubbles in this experiment. When a supersaturated solution was passed through a jet-stream producer, a rapid reduction of water hardness and an increase of pH appeared. Field measurements were used to support the laboratory experiments. Work on the Ya He River and at the Dishuiyan Waterfalls revealed that places with aeration had the quickest hardness reduction and the highest average rate of calcite deposition

Physical Mechanisms of River Waterfall Tufa (Travertine) Formation, 2001, Zhang David Dian, Zhang Yingjun, Zhu An, Cheng Xing,
Waterfall tufa is widely distributed around the world, especially in tropical and subtropical karst areas. In these areas river water is generally supersaturated with respect to calcite, and the precipitation occurs mainly at waterfall and cascade sites. Development of waterfall tufa has been described as simply being the result of water turbulence. We believe, however, that three physical effects can lead to tufa deposition at waterfall sites: aeration, jet-flow, and low-pressure effects. The three physical effects are induced by two basic changes in the water: an accelerated flow velocity, and enlargement of the air-water interface area. These two changes increase the rate of CO2 outgassing and the SIc, so that a high degree of supersaturation is achieved, which then induces calcite precipitation. These 'waterfall effects' have been simulated in laboratory and field experiments, and each of them can accelerate, or trigger, calcite precipitation. Field measurements of river water chemistry also show that tufa deposition occurred only at waterfall sites. In these experiments and observations, waterfall effects play the most important role in triggering and accelerating CO2 outgassing rates. Field and laboratory observations indicate that plants and evaporation also play important roles in tufa formation. Growth of algae and mosses on tufa surfaces can provide substrates for calcite nucleation and can trap detrital calcite, accelerating tufa deposition. However, the prerequisite for such deposition at waterfall sites is a high degree of supersaturation in river water, which is mainly caused by waterfall effects. Evaporation can lead to supersaturation in sprays and thin water films at a waterfall site and cause the precipitation of dissolved CaCO3, but the amount of such deposition is relatively small

An improved method for determination of holocene coastline changes around two ancient settlements in southern Anatolia: A geoarchaeological approach to historical land degradation studies, 2003, Bal Y, Kelling G, Kapur S, Akca E, Cetin H, Erol O,
Two well-known ancient sites in southern Anatolia were selected to investigate and quantify the impact of historical land degradation on the Mediterranean coast of Turkey. These sites are the Luwian settlements of Kelenderis (modern Aydincik) and nearby Nagidos (Bozyazi), both in Mersin Province and both occupied since around 4000 BP. Changes in local climatic conditions over this period have produced variations in the rates of fluvial transport of sediment/soil from the hinterland into the relevant deltaic regions, thus influencing rates of coastal progradation and aggradation. In addition, both eustatic and neotectonic movements have contributed to deltaic subsidence and/or hinterland uplift, with consequential impact on coastal evolution (positive or negative). The novel gcoarchaeological methodology adopted in this study involves the creation of a graphical archive from detailed and standardised measurements taken from rectified mono- and stereoscopic aerial photographs. These archival data were then integrated with data from several types of historical map and field measurements in order to develop a geographical information system (GIS) database that could be interrogated, enabling graphical models of past coastal change to be constructed and calculations then made of the coastal configurations at successive historical periods. These calculations reveal that over the past 6000 years there has been only limited erosion/degradation in the karstic hinterland supplying the sediment to these two study sites (contrary to some previous statements concerning the high degradation risk of Mediterranean karst terrains). Furthermore, rates of progradation in each delta appear to have become diminished or even reversed in the past several decades as a result of both natural and anthropogenic factors. The precise contribution of neotectonic movements in this seismically active zone remains unquantified and is a topic requiring further interdisciplinary study.

Results 1 to 10 of 10
You probably didn't submit anything to search for