Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That radial flow is 1. radial flow into or out of a well under ideal circular boundary conditions [16]. 2. the flow of ground water in all directions in response to recharge entering the subsurface at or near the top of a ground-water plateau. this conditions occurs most often through point recharge entering the subsurface via sinkholes in karst terranes.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for floridan (Keyword) returned 41 results for the whole karstbase:
Showing 1 to 15 of 41
Conduit enlargement in an eogenetic karst aquifer, , Moore Paul J. , Martin Jonathan B. , Screaton Elizabeth J. , Neuhoff Philip S.

Most concepts of conduit development have focused on telogenetic karst aquifers, where low matrix permeability focuses flow and dissolution along joints, fractures, and bedding planes. However, conduits also exist in eogenetic karst aquifers, despite high matrix permeability which accounts for a significant component of flow. This study investigates dissolution within a 6-km long conduit system in the eogenetic Upper Floridan aquifer of north-central Florida that begins with a continuous source of allogenic recharge at the Santa Fe River Sink and discharges from a first-magnitude spring at the Santa Fe River Rise. Three sources of water to the conduit include the allogenic recharge, diffuse recharge through epikarst, and mineralized water upwelling from depth. Results of sampling and inverse modeling using PHREEQC suggest that dissolution within the conduit is episodic, occurring only during 30% of 16 sampling times between March 2003 and April 2007. During low flow conditions, carbonate saturated water flows from the matrix to the conduit, restricting contact between undersaturated allogenic water with the conduit wall. When gradients reverse during high flow conditions, undersaturated allogenic recharge enters the matrix. During these limited periods, estimates of dissolution within the conduit suggest wall retreat averages about 4 × 10−6 m/day, in agreement with upper estimates of maximum wall retreat for telogenetic karst. Because dissolution is episodic, time-averaged dissolution rates in the sink-rise system results in a wall retreat rate of about 7 × 10−7 m/day, which is at the lower end of wall retreat for telogenetic karst. Because of the high permeability matrix, conduits in eogenetic karst thus enlarge not just at the walls of fractures or pre-existing conduits such as those in telogenetic karst, but also may produce a friable halo surrounding the conduits that may be removed by additional mechanical processes. These observations stress the importance of matrix permeability in eogenetic karst and suggest new concepts may be necessary to describe how conduits develop within these porous rocks.

Extinct Florida Spectacled Bear Tremarctos floridanus (Gidley) from Central Tennessee, 1967, Guilday John E. , Irving David C.

The Geothermal nature of the Floridan Plateau, 1977, Smith Douglass L. , Griffin George M.

Hydrogeology related to geothermal conditions of the Floridan Plateau -- Geologic and geomorphic setting -- The principal artesian zone -- The Boulder zone -- Injection sites in Florida -- The Geothermal regime of the Floridan Plateau -- Vertical temperature profiles in Floridan Aquifer system, geographic distribution of temperature in Floridan Aquifer system -- Surface evidence of thermal upwelling -- Humble-Lowndes-Treadwell No. 1 -- Warm mineral springs sinkhole -- The Mud hole submarine spring -- Comparison of theoretical and field studies -- The Dolomite question and cavity formation, Geothermal gradients below the Floridan Aquifer system -- Heat flow in Florida oil test holes and indications of oceanic crust beneath the Southern Florida-Bahamas Platform -- Spatial distribution of ground water temperature in South Florida -- Regional significance of Florida heat flow values -- Thermal model for the Florida crust -- A Model of subsidence with inhomogeneous heat production.

A Sabertooth Cat Smilodon floridanus (Leidy), from Hurricane River Cave, Northwest Arkansas, 1980, Hawksley Oscar, Yongsteadt Norman W. , Youngsteadt Jean O.

High-resolution seismic expression of karst evolution within the Upper Floridan aquifer system; Crooked Lake, Polk County, Florida, 1994, Evans Mw, Snyder Sw, Hine Ac,

We collected 43 km of high resolution seismic reflection profiles from a 14.5-hectare lake in the central Florida sinkhole district and data from three adjacent boreholes to determine the relationship between falling lake levels and the underlying karst stratigraphy. The lake is separated from karstified Paleogene to early Neogene carbonates by 65-80 m of siliciclastic sands and clays. The carbonate and clastic strata include three aquifer systems separated by clay-confining units: a surficial aquifer system (fine to medium quartz sand in the upper 20-30 m), the 25-35 m thick intermediate aquifer system (in Neogene siliciclastics), and the highly permeable upper Floridan aquifer system in Paleogene to early Neogene limestones. Hydraulic connection between these aquifer systems is indicated by superjacent karst structures throughout the section. Collapse zones of up to 1000 m in diameter and > 50 m depth extend downward from a prominent Middle Miocene unconformity into Oligocene and Upper Eocene limestones. Smaller sinkholes (30-100 m diameter, 10-25 m depth) are present in Middle to Late Neogene clays, sands, and carbonates and extend downward to or below the Middle Miocene unconformity. Filled and open shafts (30-40 m diameter; 10-25 m depth) ring the lake margin and overlie subsurface karst features. The large collapse zones are localized along a northeast-southwest line in the northern ponds and disrupt or deform Neogene to Quaternary strata and at least 50 m of the underlying Paleogene carbonate rocks. The timing and vertical distribution of karst structures are used to formulate a four-stage model that emphasizes stratigraphic and hydrogeologic co-evolution. (1) Fracture-selective shallow karst features formed on Paleogene/early Neogene carbonates. (2) Widespread karstification was limited by deposition of Middle Miocene clays, but vertical karst propagation continued and was focused because of the topographic effects of antecedent karst. (3) Groundwater heads, increase with the deposition of thick sequences of clastics over the semipermeable clays during Middle and Late Neogene time. The higher water table and groundwater heads allowed the accumulation of acidic, organic-rich soils and chemically aggressive waters that percolated down to Paleogene carbonates via localized karst features. (4) After sufficient subsurface dissolution, the Paleogene carbonates collapsed, causing disruption and deformation of overlying strata. The seismic profiles document an episodic, vertically progressive karst that allows localized vertical leakage through the clay-confining units. The spatial and temporal karst distribution is a result of deposition of sediments with different permeabilities during high sea levels and enhanced karst dissolution during low sea levels. Recent decreases in the potentiometric elevation of the Floridan Aquifer System simulates a sea-level lowstand, suggesting that karst dissolution will increase in frequency and magnitude

Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 mid for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions

The combined use of Sr-87/Sr-86 and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst, 1996, Katz B. G. , Bullen T. D. ,
The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The Sr-87/Sr-86 ratio along with the stable isotopes, D, O-18, and C-13 were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the Sr-87/Sr-86 ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2 generally increase with depth, and higher concentrations of Sr2 in water from the Upper Floridan aquifer (20-35 mu g/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [delta(13)C = -1.6 permil (parts per thousand)] is also indicated by an enriched delta(13)C(DIC) (-8.8 to -11.4 parts per thousand) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (delta(13)C(DIC) < -16 parts per thousand). Groundwater downgradient from Lake Barco was enriched in O-18 and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the Sr-87/Sr-86 ratio of groundwater and aquifer material become less radiogenic and the Sr2 concentrations generally increase with depth. However, Sr2 concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2 concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2 from clays. Based on results from mass-balance modeling, it is probable that cation exchange plays the dominant role in controlling the Sr-87/Sr-86 ratio of groundwater, both upgradient and downgradient from Lake Barco. Even though groundwater from the three distinct hydrogeologic units displays considerable variability in Sr concentration and isotopic composition, the dominant processes associated with the mixing of lakewater leakage with groundwater, as well as the effects of mineral-water interaction, can be ascertained by integrating the use of stable and radiogenic isotopic measurements of groundwater, lakewater, and aquifer minerals

Interactions between ground water and surface water in the Suwannee River Basin, Florida, 1997, Katz B. G. , Dehan R. S. , Hirten J. J. , Catches J. S. ,
Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where around water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River

River water intrusion to the unconfined Floridan Aquifer, 1998, Kincaid Todd R. ,
Rapid infiltration of river water into unconfined parts of the Floridan aquifer represents a significant component of subsequent ground-water discharge in regions where the aquifer is dissected by surface streams. A two-year investigation of the Devil's Ear cave system, an extensive saturated conduit network in the Floridan aquifer which underlies a 1.5-km reach of the Santa Fe River in north-central Florida, revealed that there is an appreciable and rapid exchange of water between the river and the underlying Floridan aquifer. Natural tracers Radon-222 ( 222 Rn) and delta 18 O were used to quantify these exchanges. Cave diving was employed to collect 50 water samples which were analyzed for tracer content and to observe water clarity conditions within the saturated karst conduits as far as 1.2 km from the cave entrance. 222 Rn concentrations measured in the cave system revealed three distinct zones where river water is rapidly intruded into the Floridan aquifer. A two-component mixing model was used to quantify the intruded river water that was found to account for as much as 62 percent of the discharge at Devil's Ear spring. Observations of diminished water clarity in the cave system following large precipitation events in the highland provinces of the Santa Fe River basin indicate that river water intrusion to the aquifer can occur in as little as one or two days. The results of this investigation imply that, in regions such as the western Santa Fe River basin, there can be no clear distinction between ground and surface waters and intruded river water provides a significant vehicle for contamination of the unconfined Floridan aquifer

Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream, 1998, Katz B. G. , Catches J. S. , Bullen T. D. , Michel R. L. ,
The Little River, an ephemeral stream that drains a watershed of approximately ss km(2) in northern Florida, disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer, the source of water supply in northern Florida. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques, Nine monitoring wells were installed open to the uppermost part of the aquifer in areas near the sinks where numerous subterranean karst solution features were identified using ground penetrating radar. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Rapid recharge of river water into some parts of the aquifer during high-flow conditions was indicated by enriched values of delta O-18 and delta deuterium (-1.67 to -3.17 per mil and -9.2 to -15.6 per mil, respectively), elevated concentrations of tannic acid, higher (more radiogenic) Sr-87/Sr-86 ratios, and lower concentrations of Rn-222, silica, and alkalinity compared to low-how conditions. The proportion of river water that mixed with ground water ranged from 0.10 to 0.67 based on binary mixing models using the tracers O-18, deuterium, tannic acid, silica, Rn-222, and Sr-87/Sr-86. On the basis of mass-balance modeling during steady-state how conditions, the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter. (C) 1998 Elsevier Science B.V. All rights reserved

Vertical leakage and vertically averaged vertical conductance for karst lakes in Florida, 1998, Motz L. H. ,
In the karst lake district in peninsular Florida in the southeastern United States, as many as 70% of the lakes lack surface outlets, and groundwater outflow is an important part of the water budgets of these: lakes. For 11 karst lakes in the Central Lake District, vertical leakage from the lakes to the upper Floridan aquifer averages 0.12 to 4.27 m yr(-1). The vertically averaged vertical conductance K-v/b, a coefficient that represents the average of the vertical conductances of the hydrogeologic units between the bottom of a lake and the top of the upper Floridan aquifer, was determined to range from 0.0394 to 1.00 yr(-1) for these lakes. For six of the lakes, various hydraulic parameters previously calculated by other investigators are shown to be equivalent to the K,ib values calculated in this study. If K-v/b is determined for a lake, then vertical leakage can be estimated for other conditions of lake stage and hydraulic head in the upper Floridan aquifer, using K-v/b for the lake and Darcy's equation written for vertical flow. The methodology described in this paper for quantifying K-v/b, which requires only limited data (i.e., vertical leakage, lake stage, and hydraulic head in the upper Floridan aquifer), could be used to investigate the apparent association between relatively large K-v/b values and lake level instabilities at some lakes in the Central Lake District and similar hydrogeologic settings. This methodology for calculating vertical leakage is applicable to the Central Lake District in Florida and to other similar lake and groundwater systems

Regional groundwater flow model construction and wellfield site selection in a karst area, Lake City, Florida, 1999, Dufresne Dp, Drake Cw,
The city of Lake City is in the process of expanding their water supply facilities by 45 420 m(3) day(-1) (12 MGD) to meet future demands. One portion of wellfield site selection addressed here includes analysis of ambient groundwater quality and its potential for contamination. This study also addresses the potential impacts of groundwater withdrawals to existing legal users, wetlands, surface waters and spring flows. A regional groundwater flow model (MODFLOW) was constructed using existing hydrogeologic data from state and federal agencies in order to simulate the existing hydrologic conditions of this karst area and to predict withdrawal impacts. The model was calibrated by matching potentiometric surface maps and spring flows to within reasonable ranges. Drawdowns in the Floridan and surficial aquifers predicted by the model show minimal impacts to existing legal users and only a 5% reduction in the flow at Ichetucknee Springs ca 21 km (13 miles) away. Due to the karstic nature of the Floridan aquifer here, the equivalent-porous-medium flow model constructed would not be appropriate for contaminant transport modeling. The groundwater flow model is, however, appropriate to represent hydraulic heads and recharge/discharge relationships on a regional scale. (C) 1999 Elsevier Science B.V. All rights reserved

Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA, 1999, Crandall Ca, Katz Bg, Hirten Jj,
Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m(3)/s. During these high-now conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and Rn-222; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, Rn-222, HCO3)

Toward understanding transport in the Floridan karst, 1999, Loper D.
There is a strong need for better scientific knowledge of groundwater behavior in Floridan-type karstic aquifers and for better mechanisms to transfer such knowledge into practiceTo facilitate this transfer, a new scientific organization called the Hydrogeology Consortium has recently been establishedThe Consortium is described in detail elsewhere in this volumeIts mission is to cooperatively provide scientific knowledge applicable to groundwater resource management and protectionA necessary adjunct to the mission of the Consortium is the development of better models of transport and dispersion in karstic aquifersA first step in this development is elucidation of the shortcomings of the standard model of dispersionIn this model, dispersion is represented by an effective diffusivity, called the dispersion coefficient, which is the product of the mean flow speed and the decorrelation distanceIt is shown that this model does not correctly describe dispersion in an aquifer having porosity that is weakly correlated on a large scaleThat is, the concept of a decorrelation distance is not viable for a non-homogeneous aquiferOne approach toward the quantification of transport and dispersion in karstic aquifers to model the aquifer as a classic Darcian porous medium riddled by a distribution of macroscopic conduitsThe flow properties of this model are compatible with the standard Darcian model, but its transport equation is non-autonomous; it has coefficients that depend on the elapsed time

Results 1 to 15 of 41
You probably didn't submit anything to search for