Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That head water is the upper reach of a stream [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for fluid migration (Keyword) returned 13 results for the whole karstbase:
Petrography of the Lower Ordovician Ellenburger Group, both in deeply-buried subsurface cores and in outcrops which have never been deeply buried, documents five generations of dolomite, three generations of microquartz chert, and one generation of megaquartz. Regional periods of karstification serve to subdivide the dolomite into 'early-stage', which predates pre-Middle Ordovician karstification, and 'late-stage', which postdates pre-Middle Ordovician karstification and predates pre-Permian karstification. Approximately 10% of the dolomite in the Ellenburger Group is 'late-stage'. The earliest generation of late-stage dolomite, Dolomite-L1, is interpreted as a precursor to regional Dolomite-L2. L1 has been replaced by L2 and has similar trace element, O, C, and Sr isotopic signatures, and similar cathodoluminescence and backscattered electron images. It is possible to differentiate L1 from L2 only where cross-cutting relationships with chert are observed. Replacement Dolomite-L2 is associated with the grainstone, subarkose, and mixed carbonate-siliciclastic facies, and with karst breccias. The distribution of L2 is related to porosity and permeability which focused the flow of reactive fluids within the Ellenburger. Fluid inclusion data from megaquartz, interpreted to be cogenetic with Dolomite-L2, yield a mean temperature of homogenization of 85 6-degrees-C. On the basis of temperature/delta-O-18-water plots, temperatures of dolomitization ranged from approximately 60 to 110-degrees-C. Given estimates of maximum burial of the Ellenburger Group, these temperatures cannot be due to burial alone and are interpreted to be the result of migration of hot fluids into the area. A contour map of delta-O-18 from replacement Dolomite-L2 suggests a regional trend consistent with derivation of fluids from the Ouachita Orogenic Belt. The timing and direction of fluid migration associated with the Ouachita Orogeny are consistent with the timing and distribution of late-stage dolomite. Post-dating Dolomite-L2 are two generations of dolomite cement (C1 and C2) that are most abundant in karst breccias and are also associated with fractures, subarkoses and grainstones. Sr-87/Sr-86 data from L2, C1, and C2 suggest rock-buffering relative to Sr within Dolomite-L2 (and a retention of a Lower Ordovician seawater signature), while cements C1 and C2 became increasingly radiogenic. It is hypothesized that reactive fluids were Pennsylvanian pore fluids derived from basinal siliciclastics. The precipitating fluid evolved relative to Sr-87/Sr-86 from an initial Pennsylvanian seawater signature to radiogenic values; this evolution is due to increasing temperature and a concomitant evolution in pore-water geochemistry in the dominantly siliciclastic Pennsylvanian section. A possible source of Mg for late-stage dolomite is interpreted to be from the dissolution of early-stage dolomite by reactive basinal fluids

Alteration of magnetic properties of Palaeozoic platform carbonate rocks during burial diagenesis (Lower Ordovician sequence, Texas, USA), 1999, Haubold Herbert,
Palaeomagnetic and sedimentological investigations of samples from two sections of correlative Iapetan platform carbonate rocks from Texas, USA, were made to test whether their magnetic properties reflect diagenetic alteration associated with regional and local tectonism. The Honeycut Formation (Llano Uplift area, central Texas), in close proximity to the late Palaeozoic Ouachita orogenic belt, exhibits a distinct correlation between magnetization intensity, magnetization age (direction) and lithofacies. Mudstones preserve their weak primary Early Ordovician magnetization, whereas dolo-grainstones carry a strong Pennsylvanian magnetization residing in authigenic magnetite. Fluid migration associated with the Ouachita Orogeny has been focused in lithofacies with high permeability and caused dolomite recrystallization and pervasive remagnetization. Magnetization intensity trends covary with fluid/rock ratios. However, aquitards were either not affected or less affected by these fluids. Unlike the Honeycut Formation, permeable rocks of the El Paso Group (Franklin Mountains, west Texas) carry only a non-pervasive Pennsylvanian magnetization. Therefore, a larger percentage of El Paso Group samples retain a primary Early Ordovician signature. This area is further removed from the Ouachita front, and, thus, the influence by Pennsylvanian orogenic fluids was less pronounced

Geochemical study of calcite veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic): evidence for widespread post-Variscan fluid flow in the central part of the Bohemian Massif, 2000, Suchy V. , Heijlen W. , Sykorova I. , Muchez Ph. , Dobes P. , Hladikova J. , Jackova I. , Safanda J. , Zeman A.

Carbonate fracture cements in limestones have been investigated by fluid inclusion and stable isotope analysis to provide insight into fluid evolution and deformation conditions of the Barrandian Basin (Silurian–Devonian) of the Czech Republic. The fractures strike generally north–south and appear to postdate major Variscan deformation. The most common fracture cement is calcite that is locally accompanied by quartz, natural bitumen, dolomite, Mn-oxides and fluorite. Three successive generations of fracture-filling calcite cements are distinguished based on their petrographical and geochemical characteristics. The oldest calcite cements (Stage 1) are moderate to dull brown cathodoluminescent, Fe-rich and exhibit intense cleavage, subgrain development and other features characteristic of tectonic deformation. Less tectonically deformed, variable luminescent Fe-poor calcite corresponds to a paragenetically younger Stage 2 cement. First melting temperatures, Te, of two-phase aqueous inclusions in Stages 1 and 2 calcites are often around 2208C, suggesting that precipitation of the cements occurred from H2O–NaCl fluids. The melting temperature, Tm, has values between 0 and 25.88C, corresponding to a low salinity between 0 and 8.9 eq. wt% NaCl. Homogenization temperatures, Th, from calcite cements are interpreted to indicate precipitation at about 708C or less. No distinction could be made between the calcite of Stages 1 and 2 based on their fluid inclusion characteristics. In some Stage 2 cements, inclusions of highly saline (up to 23 eq. wt% NaCl) brines appear to coexist with low-salinity inclusions. The low salinity fluid possibly contains Na-, K-, Mg- and Ca-chlorides. The high salinity fluid has a H2O–NaCl–CaCl2 composition. Blue-to-yellow-green fluorescing hydrocarbon inclusions composed of medium to higher API gravity oils are also identified in some Stages 1 and 2 calcite cements. Stage 1 and 2 calcites have d 18O values between 213.2‰ and 27.2‰ PDB. The lower range of the calculated d 18O values of the ambient fluids (23.5‰ to 1 2.7‰ SMOW) indicate precipitation of these cements from deeply circulating meteoric waters. The presence of petroleum hydrocarbon inclusions in some samples is interpreted to reflect partial mixing with deeper basinal fluids. The paragenetically youngest Stage 3 calcite cement has only been encountered in a fewveins.These calcites are characterised by an intensely zoned luminescence pattern, with bright yellow and non-luminescent zones. Inclusions of Mn-oxides and siliceous sinters are commonly associated with Stage 3 calcite, which is interpreted to have precipitated from shallower meteoric waters. Regional structural analysis revealed that the calcite veins of the Barrandian basin belong to a large-scale system of north–south-trending lineaments that run through the territory of the Czech Republic. The veins probably reflect episodes of fluid migration that occurred along these lineaments during late stages of the Variscan orogeny

Australian Zn-Pb-Ag Ore-Forming Systems: A Review and Analysis, 2006, Huston David L. , Stevens Barney, Southgate Peter N. , Muhling Peter, Wyborn Lesley,
Zn-Pb-Ag mineral deposits are the products of hydrothermal ore-forming systems, which are restricted in time and space. In Australia, these deposits formed during three main periods at ~2.95, 1.69 to 1.58, and 0.50 to 0.35 Ga. The 1.69 to 1.58 Ga event, which accounts for over 65 percent of Australia's Zn, was triggered by accretion and rifting along the southern margin of Rodinia. Over 93 percent of Australia's Zn-Pb-Ag resources were produced by four ore-forming system types: Mount Isa (56% of Zn), Broken Hill (19%), volcanic-hosted massive sulfide (VHMS; 12%), and Mississippi Valley (8%). Moreover, just 4 percent of Australia's land mass produced over 80 percent of its Zn. The four main types of ore-forming systems can be divided into two 'clans,' based on fluid composition, temperature, and redox state. The Broken Hill- and VHMS-type deposits formed from high-temperature (>200{degrees}C) reduced fluids, whereas the Mount Isa- and Mississippi Valley-type deposits formed from low-temperature (<200{degrees}C), H2S-poor, and/or oxidized fluids. The tectonic setting and composition of the basins that host the ore-forming systems determine these fluid compositions and, therefore, the mineralization style. Basins that produce higher temperature fluids form in active tectonic environments, generally rifts, where high heat flow produced by magmatism drives convective fluid circulation. These basins are dominated by immature siliciclastic and volcanic rocks with a high overall abundance of Fe2. The high temperature of the convective fluids combined with the abundance of Fe2 in the basin allow inorganic sulfate reduction and leaching of sulfide from the country rock, producing reduced, H2S-rich fluids. Basins that produce low-temperature fluids are tectonically less active, generally intracratonic, extensional basins dominated by carbonate and variably mature siliciclastic facies with a relatively low Fe2 abundance. In these basins, sediment maturity depends on the paleogeography and stratigraphic position in an accommodation cycle. Volcanic units, if present, occur in the basal parts of the basins. Because these basins have relatively low heat flow, convective fluid flow is less important, and fluid migration is dominated by expulsion of basinal brines in response to local and/or regional tectonic events. Low temperatures and the lack of Fe2 prevent in-organic sulfate reduction during regional fluid flow, producing H2S-poor fluids that are commonly oxidized (i.e., {sum}SO4 > {sum}H2S). Fluid flow in the two basin types produces contrasting regional alteration systems. High-temperature fluid-rock reactions in siliciclastic-volcanic-dominated basins produce semiconformable albite-hematite-epidote assemblages, but low-temperature reactions in carbonate-siliciclastic-dominated basins produce regional K-feldspar-hematite assemblages. The difference in feldspar mineralogy is mostly a function of temperature. In both basin types, regional alteration zones have lost, and probably were the source of, Zn and Pb. The contrasting fluid types require different depositional mechanisms and traps to accumulate metals. The higher temperature, reduced VHMS- and Broken Hill-type fluids deposit metals as a consequence of mixing with cold seawater. Mineralization occurs at or near the sea floor, with trapping efficiencies enhanced by sub-surface replacement or deposition in a brine pool. In contrast, the low-temperature, oxidized Mount Isa- and Mississippi Valley-type fluids precipitate metals through thermochemical sulfate reduction facilitated by hydrocarbons or organic matter. This process can occur at depth in the rock pile, for instance in failed petroleum traps, or just below the sea floor in pyritic, organic-rich muds

Variscan veins: record of fluid circulation and Variscan tectonothermal events in Upper Palaeozoic limestones of the Moravian Karst, Czech Republic, 2006, Slobodnik M. , Muchez P. H. , Kral J. , Keppens E. ,
Numerous Variscan syntectonic calcite veins cross-cut Palaeozoic rocks in the Moravian Karst. A structural, petrographic and stable isotopic analysis of the calcite veins and a microthermometric study of fluid inclusions in these vein cements have been carried out to determine the origin of the Variscan fluids and their migration during burial and deformation. The isotopic parameters of white (older, more deformed) and rose (younger) calcites are: 87Sr/86Sr is between 0.7078 and 0.7082 (white) and 0.7086 (rose), {delta}18O is between .7 and .1 (white) and between .8 and .7 {per thousand} SMOW (rose), {delta}13C ranges from .1 to .5 (white) and from -0.3 to .6 {per thousand} V-PDB (rose). The isotopic signatures point to precipitation in an older fluid system buffered by the host rock (white calcites) and to an open, younger fluid-dominated system (rose calcites). Parent fluids (H2O-NaCl system) had salinities between 0.35 and 17.25 eq. wt % NaCl. The pressure-corrected and confined homogenization temperatures suggest formation of the calcite veins from a fluid with a temperature between 120 and 170 {degrees}C, a pressure of 300-880 bar at a depth between 2.1 and 3.2 km. The fluids were most likely confined to a particular sedimentary bed as a bed-scale fluid migration (white older calcite veins) or, later, to a pile of Palaeozoic sediments as a stratigraphically restricted fluid flow (rose younger calcite veins). The low temperatures and pressures during precipitation of calcites, which took place close to a peak of burial/deformation, confirm the distal position of the Moravian Karst region within the Variscan orogen

Genesis of the Neogene interstratal karst-type Pöhrenk fluorite?barite ( lead) deposit (Kırşehir, Central Anatolia, Turkey), 2006, Genç, Yurdal
The Pöhrenk fluorite?barite ( lead) deposit is located 200 km east of Ankara, Central Anatolia, Turkey. The ores are hosted by sedimentary rocks of the east?west trending Tertiary Çiçekdağı foreland basin. The Çiçekdağı Basin is bounded by Paleozoic metamorphic rocks of the Kırşehir Massif in the south, and Upper Cretaceous ophiolites and Paleocene granitoids in the north. The basin contains mainly Eocene and Upper Miocene?Pliocene sediments. The Eocene sediments consist of conglomerate, sandstone, marl and carbonate. These are covered unconformably by red conglomerate, mudstone, sandstone, siltstone and claystone of Late Miocene?Pliocene age. Mineralization occurs both in Eocene (Lutetian) limestones and Neogene detrital rocks. The distribution of ores is controlled by the unconformity surface between limestones and detrital rocks. The main ore types are replacements, open-space fillings, breccias and veins. The Pöhrenk deposit was emplaced epigenetically after the host rocks and shares some characteristics with the paleokarst- and Mississippi-Valley-type deposits. Fluid inclusion and stable isotope data indicate that ore fluids for the mineralization were mildly hot (58 to 154 C), highly saline (14 to 21 wt.% NaCl equivalent) formation waters and ore deposition occurred in a paleokarst environment. The driving force for fluid migration was both topographic gradients created by uplift and tectonic squeezing of basin sediments. The Paleocene granitoids in the north are considered as the potentially main source of F, Ba and Pb for the Pöhrenk deposit. Release of these elements from granitoids can be tied to erosion and leaching.

Tectonic-hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming , 2006, Katz D. A. , Eberli G. P. , Swart P. K. , Smith Jr. L. B.

The Mississippian Madison Formation contains abundant fracture zones and breccias that are hydrothermal in origin based on their morphology, distribution, and geochemical signature. The hydrothermal activity is related to crustal shortening during the Laramide orogeny. Brecciation is accompanied by dedolomitization, late-stage calcite precipitation, and porosity occlusion, especially in outcrop dolomites. The tectonic-hydrothermal late-stage calcite reduces permeability in outcrops and, potentially, high-quality subsurface reservoir rocks of the subsurface Madison Formation, Bighorn Basin. The reduction of permeability and porosity is increased along the margins of the Bighorn Basin but not predictable at outcrop scale. The destruction of porosity and permeability by hydrothermal activity in the Madison Formation is unique in comparison to studies that document enhanced porosity and permeability and invoke hydrothermal dolomitization models. Hydrothermal breccias from the Owl Creek thrust sheet are classified into four categories based on fracture density, calcite volume, and clast orientation. Shattered breccias dominate the leading edge of the tip of the Owl Creek thrust sheet in the eastern Owl Creek Mountains, where tectonic deformation is greatest, whereas fracture, mosaic, and chaotic breccias occur throughout the Bighorn Basin. The breccias are healed by calcite cements with d18O values ranging between _26.5 and _15.1xPeedee belemnite (PDB), indicating that the cements were derived from isotopically depleted fluids with elevated temperatures. In the chaotic and mosaic breccia types, large rotated and angular clasts of the host rock float in the matrix of coarse and nonzoned late-stage calcite. This appearance, combined with similar d18O values across even large calcite veins, indicates that the calcite precipitated rapidly after brecciation. Values for d13C(_5–12xPDB) from the frontal part of the Owl Creek thrust sheet indicate equilibrium between methane and CO2-bearing fluids at about 180jC. Fluid inclusions from the eastern basin margin show that these cements are in equilibrium with fluids having minimum temperatures between 120 and 140jC and formed from relatively low-salinity fluids, less than 5 wt.% NaCl. Strontium isotope ratios of these hydrothermal fluids are more radiogenic than proposed values for Mississippian seawater, suggesting that the fluids mixed with felsic-rich basement before migrating vertically into the Madison Formation. We envisage that the tectonic-hydrothermal late-stage calcitecemented breccias and fractures originated from undersaturated meteoric ground waters that migrated into the burial environment while dissolving and incorporating Ca2+ and CO3 2_ and radiogenic Sr from the dissolution of the surrounding carbonates and the felsic basement, respectively. In the burial environment, these fluids were heated and mixed with hypersaline brines from deeply buried parts of the basement. Expulsion of these fluids along basementrooted thrust faults into the overlying strata, including the Madison Formation, occurred most likely during shortening episodes of the Laramide orogeny by earthquake-induced rupturing of the host rock. The fluids were injected forcefully and in an explosive manner into the Madison Formation, causing brecciation and fracturing of the host rock, whereas the subsequent and sudden decrease in the partial pressure of CO2 caused the rapid precipitation of calcite cements. The explosive nature of hydrothermal fluid migration ultimately produces heterogeneities in reservoir-quality carbonates. In general, flow units in the Madison Formation are related to sequence boundaries, which create vertical subdivisions in the porous dolomite. The late-stage calcite cement surrounds hydrothermal breccia clasts and invades the dolomite, reducing porosity and permeability of the reservoir-quality rock. As a consequence, horizontal flow barriers and compartments are established that are locally unpredictable in their location and extent and regionally predictable along the margins of the Bighorn Basin. 

Nonsulfide and sulfide-rich zinc mineralizations in the Vazante, Ambrsia and Fagundes deposits, Minas Gerais, Brazil: Mass balance and stable isotope characteristics of the hydrothermal alterati, 2007, Soares Monteiro Lena Virgí, Nia, Bettencourt Jorge Silva, Juliani Caetano, De Oliveira Tolentino Flvio
The Vazante Group hosts the Vazante nonsulfide zinc deposit, which comprises high-grade zinc silicate ore (ZnSiO4), and late-diagenetic to epigenetic carbonate-hosted sulfide-rich zinc deposits (e.g. Morro Agudo, Fagundes, and Ambrósia). In the sulfide-rich deposits, hydrothermal alteration involving silicification and dolomitization was related with ground preparation of favorable zones for fluid migration (e.g. Fagundes) or with direct interaction with the metalliferous fluid (e.g. Ambrósia). At Vazante, hydrothermal alteration resulted in silicification and dolomite, siderite, jasper, hematite, and chlorite formation. These processes were accompanied by strong relative gains of SiO2, Fe2O3(T), Rb, Sb, V, U, and La, which are typically associated with the nonsulfide zinc mineralization. All sulfide-rich zinc ores in the district display a similar geochemical signature suggesting a common metal source from the underlying sedimentary sequences. Oxygen and carbon isotope compositions of hydrothermally altered rocks reveal a remarkable alteration halo at the Vazante deposit, which is not a notable feature in the sulfide-rich deposits. This pattern could be attributed to fluid mixing processes involving the metalliferous fluid and channelized meteoric water, which may control the precipitation of the Vazante nonsulfide ore. Sulfide deposition resulted from fluid?rock interaction processes and mixing between the ascending metalliferous fluids and sulfur-rich tectonic brines derived from reduced shale units.


Hypogene speleogenesis is widespread throughout the Delaware Basin region as evidenced by intrastratal dissolution, hypogenic caves and suites of diagenetic minerals. The world famous carbonate caves of the Capitan reef facies of the Guadalupe Mountains have long been associated with sulfuric acid processes and recently have been associated with semi-confined, hypogene dissolution. However, evaporite karst within Permian backreef and basin-filling facies has been traditionally associated with surficial, epigene processes. On the eastern edge of the Delaware Basin cavernous porosity associated with oil reservoirs in Permian carbonates have been attributed to eogenetic karst processes.
Interbedded (evaporite / carbonate), backreef facies within the mid-Permian Seven Rivers Formation exhibit characteristics of hypogene karst associated with semi-confined dissolution controlled by the eastward migration and entrenchment of the Pecos River. Coffee Cave is a good example of hypogene dissolution, forming a multi-storey, rectilinear maze with abundant distinctive morphologic feature suites (i.e. risers, channels and cupolas) indicative of hypogene speleogenesis. Other caves within the Seven Rivers and Rustler Formations show similar patterns, although often less well developed.
Within the Delaware Basin, Castile Formation evaporites have been extensively modified by hypogene processes. Field mapping coupled with GIS analyses clearly shows that karst development and evaporite calcitization are highly clustered throughout the outcrop area. Individual caves commonly exhibit complex morphologies, including complete suites of morphologic features indicative of intrastratal dissolution. Clusters of hypogene caves are commonly associated with clusters of evaporite calcitization and often occurrences of secondary selenite bodies, suggesting all three are genetically related. Brecciated cores and associated native sulfur deposits indicate that calcitized evaporites are the result of semi-confined sulfate reduction in the presence of ascending hydrocarbons. Hypogene caves are currently being overprinted by epigene processes as surface denudation results in breaching of previously confined solutional conduits. However, calcitized evaporites stand as resistant masses attesting to the widespread importance of hypogene processes within the Castile Formation.
On the southern end of the Central Basin Platform, the spatial distribution of cavernous porosity, secondary mineralization and abundant karst fabrics within the Yates Field carbonate strata provide convincing evidence that karst porosity, at least locally, within the San Andres and overlying Permian strata is the result of hypogene speleogenesis. Porosity development appears to have been enhanced by high geothermal gradients and the addition of sulfuric acid-rich fluids, reminiscent of the same processes that have been proposed for the extensive carbonate caves of the Guadalupe Mountains.
Recognition of the widespread occurrence of hypogene speleogenesis throughout the Delaware Basin region indicates that the regional diagenetic evolution has been significantly affected by confined fluid migration, including not only the development of porosity but also the emplacement of many secondary mineral deposits. Therefore, future natural resource management plans must consider the nature of hypogene karst in site evaluations throughout the region in order to better predict geohazards, potential groundwater contamination and characterize mineral resources.

Hypogene calcitization: Evaporite diagenesis in the western Delaware Basin, 2008, Stafford Kevin W. , Ulmerscholle Dana, Rosaleslagarde Laura

Evaporite calcitization within the Castile Formation of the Delaware Basin is more widespread and diverse than originally recognized. Coupled field and GIS studies have identified more than 1000 individual occurrences of calcitization within the Castile Formation outcrop area, which includes both calcitized masses (limestone buttes) and laterally extensive calcitized horizons (limestone sheets). Both limestone buttes and sheets commonly contain a central brecciated zone that we attribute to hypogene dissolution. Lithologic fabric of calcitized zones ranges from little alteration of original varved laminae to fabries showing extensive laminae distortion as well as extensive vuggy and open cavernous porosity. Calcitization is most abundant in the western portion of the Castile outcrop region where surface denudation has been greatest. Calcitization often forms linear trends, indicating fluid migration along fractures, but also occurs as dense clusters indicating focused, ascending, hydrocarbon-rich fluids. Native sulfur, secondary tabular gypsum (i.e. selenite) and hypogene caves are commonly associated with clusters of calcitization. This assemblage suggests that calcium sulfate diagenesis within the Castile Formation is dominated by hypogene speleogenesis.

Geochemical/isotopic evolution of Pb-Zn deposits in the Central and Eastern Taurides, Turkey, 2011, Hanilci N. , Ozturk H.

The Central and Eastern Taurides contain numerous carbonate-hosted Pb-Zn deposits, mainly in Devonian and Permian dolomitized reefal-stramatolitic limestones, and in massive Jurassic limestones. We present and compare new fluid inclusion and isotopic data from these ore deposits, and propose for the first time a Mississippi Valley-type (MVT) mode of origin for them. Fluid inclusion studies reveal that the ore fluids were highly saline (13-26% NaCl equiv.), chloride-rich (CaCl2) brines, and have average homogenization temperatures of 112°C, 174.5°C, and 211°C for the Celal Dag, Delikkaya, and Ayrakl deposits, respectively. Furthermore, the ?34S values of carbonate-hosted Pb-Zn deposits in the Central and Eastern Taurides vary between -5.4‰ and +13.70‰. This indicates a possible source of sulphur from both organic compounds and crustal materials. In contrast, stable sulphur isotope data (average ?34S -0.15‰) for the Cadrkaya deposit, which is related to a late Eocene-Oligocene (?) granodioritic intrusion, indicates a magmatic source. The lead isotope ratios of galena for all investigated deposits are heterogeneous. In particular, with the exception of the Sucat district, all deposits in the Eastern (Delikkaya, Ayrakl, Denizovas, Cadrkaya) and Central (Katranbasi, Kucuksu) Taurides have high radiogenic lead isotope values (206Pb/204Pb between 19.058 and 18.622; 207Pb/204Pb between 16.058 and 15.568; and 208Pb/204Pb between 39.869 and 38.748), typical of the upper continental crust and orogenic belts. Fluid inclusion, stable sulphur, and radiogenic lead isotope studies indicate that carbonate-hosted metal deposits in the Eastern (except for the Cadrkaya deposit) and the Central Taurides are similar to MVT Pb-Zn deposits described elsewhere. The primary MVT deposits are associated with the Late Cretaceous-Palaeocene closure of the Tethyan Ocean, and formed during the transition from an extensional to a compressional regime. Palaeogene nappes that typically limit the exposure of ore bodies indicate a pre-Palaeocene age of ore formation. Host rock lithology, ore mineralogy, fluid inclusion, and sulphur + lead isotope data indicate that the metals were most probably leached from a crustal source such as clastic rocks or a crystalline massif, and transported by chloride-rich hydrothermal solutions to the site of deposition. Localization of the ore deposits on autochthonous basement highs indicates long-term basinal fluid migration, characteristic of MVT depositional processes. The primary MVT ores were oxidized in the Miocene, resulting in deposition of Zn-carbonate and Pb-sulphate-carbonate during karstification. The ores underwent multiple cycles of oxidation and, in places, were re-deposited to form clastic deposits. Modified deposits resemble the 'wall-rock replacement' and the 'residual and karst fill' of non-sulphide zinc deposits and are predominantly composed of smithsonite

Giant pockmarks in a carbonate platform (Maldives, Indian Ocean), 2011, Betzler C. , Lindhorst S. , Hubscher C. , Ludmann T. , Furstenau J. , Reijmer J.

Circular structures and depressions in carbonate platforms are known to represent karst chimneys or sinkholes which form as a response to rock solution. This formation mechanism is plausible for shallow-water carbonates which lie in the reach of meteoric diagenesis or fresh-water lenses. Circular structures which occur in deeper waters, however, need an alternative interpretation. Such an example of sea-floor depressions in more than 300. m deep waters occurs in the Inner Sea of the Maldives carbonate platform in the Indian Ocean. The structures were mapped with multibeam and Parasound, multi-channel seismics were used to link the depressions with structures at depth. The circular depressions have diameters of up to 3000. m and depths of up to 180. m. The craters are interpreted as pockmarks formed through the venting of gas and fluids. Gas and fluid lenses below the pockmarks are reflected by bright spots in the seismic sections as well as a reduction of the instantaneous frequency. These areas at depth are linked to chimneys connected to faults and drowned Oligocene carbonate banks. A model is presented that relates the different forms and sizes of the structures to distinct development stages of sea floor deformation to one process. Early stages of gas and fluid migration into the shallow part of the sedimentary succession induce formation of dome-shaped bodies. Initial gas and fluid escape to the sea floor is reflected by the formation of sand volcanoes and aligned small pockmarks. Active pockmarks are the deepest, and have the shape of truncated cones in cross section. Mature pockmarks are characterized by erosion of the flanks of the structure by bottom currents. Late stage pockmarks are bowl-shaped in cross section, and are to different degrees filled by drift sediments. Packages of strata revealing high reflection amplitudes and high interval velocities interpreted as microbially-mediated carbonate precipitates underlie some of the pockmarks. The pockmarks in the Maldives show that circular structures other than solution-related features can be abundant in carbonate platform deposits and that such structures may be more abundant in the geological record of carbonate platforms as previously thought. Pockmarks in the Maldives indicate that the archipelago is an example of a hydrocarbon system which consists of an isolated oceanic carbonate platform overlying a volcanic basement and lacustrine source rocks.

Fluid migration and porosity evolution in the Buda Hills, Hungary – selected examples from Triassic and Paleogene carbonate rocks/Dissertation submitted to the Ph.D. program for Geology and Geophysics at the Ph.D. School of Earth Sciences, Eötvös Lor, 2011, Poros, Zsófia

Porosity evolution of carbonates in the Buda Hills was the subject of this research. The aim was to provide an analogue for carbonate reservoirs that underwent multiphase diagenesis. Two major porosity types were recognized: 1) micro-porosity of powdered Triassic dolomites 2) cavernous and fracture porosity represented by the famous hypogenic cave system, hosted by Triassic and Paleogene carbonates. Powderization of dolomite is a general phenomenon in the Buda Hills, where its areal extent is exceptionally large compared to similar occurrences elsewhere in the world. Geochemistry and mineralogy of the dolomite remained constant throughout the disintegration. Powderization is absent at places where the Triassic dolomites are partially calcitized as a result of karst related dedolomitization. Since powderization was controlled by surface related processes and no geochemical changes were associated with it, disintegration of dolomite is interpreted as the result of sub-recent physical weathering, supposedly related to frost action.

Hypogenic caves are found along older calcite-barite-fluorite-sulphide veins, pointing to the fact that young cave-forming fluids migrated along the same fractures as the older mineralizing fluids did. Predominantly NNW–SSE strike of fractures concludes a latest Early Miocene maximum age for the fracture-filling minerals. Vein-calcite contains coeval primary, HC-bearing- and aqueous inclusions indicating that also HCs have migrated together with the mineralizing fluids. The coexistence of aqueous and HC inclusions permitted to establish the entrapment temperature (80°C) and pressure (85 bar) of the fluid and thus also the thickness of sediments, having been eroded since latest Early Miocene times, was calculated (800 m). Low salinity of the fluids (<1.7 NaCl eq. wt%) implies that HC-bearing fluids were diluted by regional karst water. Fluid inclusion studies also revealed that aggressive gases (e.g. CO2, H2S) were associated with HCs and that these gases may have played a role in dissolution of the carbonates. Based on the location of the paleo- and recent HC indications, identical migration pathways were reconstructed for both systems. It was proved that HC-bearing fluids have migrated northwestward from the basin east to the Buda Hills from the Miocene on. Due to the uplift related intensification of groundwater circulation, the proportion of hydrothermal fluids has diminished in favour of cold meteoric fluids. Establishment of the actual porosity of the Buda Karst initiated in Miocene times and earlier diagenetic history of the carbonates affected only the powderization of dolomite, and it had no direct effect on the localization of hypogenic caves.

Results 1 to 13 of 13
You probably didn't submit anything to search for