Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That flow line is the general path that a particle of water follows under laminar flow conditions [22]. flow lines are usually drawn perpendicular to equipotential lines. see also equipotential lines.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for fluids (Keyword) returned 153 results for the whole karstbase:
Showing 1 to 15 of 153
Remarks on the significance of experiences in karst geodynamics., 1964, Renault Philippe
Distinction is made between the experiment which "demonstrates" having an argumentative value; and the experiment which "questions" nature by isolating one factor and by determining the mode of its action. The concept of experiment in geology and in geodynamics and the distinctions between geodynamics and geophysics are discussed. Karstic geodynamics considers the action of fluids; mainly liquids; on a soluble rock. It is a science bordering the different branches of geochemistry, hydrology, the mechanics of rocks, and geophysics. Researches in karstic geodynamics are based upon measurements obtained through field surveys, or upon the utilization of a subterranean laboratory. However, in the laboratory this hardly surpasses the stage of experimental demonstration. A series of simple experiments are enumerated to exemplify the above statement, like the one where the attack of a diluted acid on a soluble rock is utilized, in order to enable us to classify the major problems encountered in karstic corrosion. The last chapter discusses the bicarbonate equilibriums of Ca-CO2. Experiment furnishes the empiric criterion on which scientific theory is founded. Each discipline has its own methodology dependent on the object under study having experimental criteria of different nature. This is particularly true in case of such distant phenomena which no longer have a common ground with human dimensions like space for astronomy or time for geology. In such cases the possibilities of "instrumental" experimentations are very limited. After a brief recollection of the principles of experimental procedure and the history of the experiments attempted by geodynamicians (tectonics, geomorphology, etc.) we will analyze several methods of investigation and by relying exactly on the example of karstic corrosion we shall determine those which have a value for the science of karstology.

An analytical study of air circulation in caves, 1968, Cigna Arrigo A.
The different types of air circulation in caves are classified according to the origin of the circulation, as either static or dynamic. In a cave static causes are: (a) differences between inside and outside air density owing to: (i) air temperature; (ii) relative humidity; (iii) chemical composition; (b) atmospheric pressure variation. Dynamic causes are: (a) moving fluids: (i) inside the cave; (ii) outside the cave. Whenever possible the above mentioned phenomena have been considered from a mathematical point of view in order to obtain equations relating the different quantities involved.

An analytical study of air circulation in caves, 1968, Cigna Arrigo A.
The different types of air circulation in caves are classified according to the origin of the circulation, as either static or dynamic. In a cave static causes are: (a) differences between inside and outside air density owing to: (i) air temperature; (ii) relative humidity; (iii) chemical composition; (b) atmospheric pressure variation. Dynamic causes are: (a) moving fluids: (i) inside the cave; (ii) outside the cave. Whenever possible the above mentioned phenomena have been considered from a mathematical point of view in order to obtain equations relating the different quantities involved.

Dynamics of Fluids in Porous Media, 1972, Bear J.


Identification of the origin of oreforming solutions by the use of stable isotopes, 1977, Sheppard S. M. F. ,
SynopsisThe four major different types of water -- magmatic, metamorphic, sea water and/or connate, and meteoric water -- have characteristic hydrogen (D/H) and oxygen (18O/16O) isotope ratios. Applied to the analysis of isotopic data on hydrothermal minerals, fluid inclusions and waters from active geothermal systems, these ratios indicate that waters of several origins are involved with ore deposition in the volcanic and epizonal intrusive environment. Water of a single origin dominates main-stage mineralization in some deposits: magmatic -- Casapalca, Peru (Ag-Pb-Zn-Cu); meteoric -- Butte, Montana (Cu-Zn-Mn), epithermal deposits, e.g. Goldfield, Tonopah, Nevada (Ag-Au), Pachuca, Mexico (Ag-Au), San Juan Mountains District, Colorado (Ag-Au-Pb-Zn); sea water -- Troodos, Cyprus (Fe-Cu), Kuroko, Japan (Fe-Cu-Pb-Zn). Solutions of more than one origin are important in certain deposits (magmatic and meteoric -- porphyry copper and molybdenum deposits) and are present in many. In the porphyry Cu-Mo deposits the initial major ore transportation and alteration processes (K-feldspar-biotite alteration) are magmatic-hydrothermal events that occur at 750-500{degrees}C. These fluids are typically highly saline Na-K-Ca-Cl-rich brines (more than 15 wt % equivalent NaCl). The convecting meteoric-hydrothermal system that develops in the surrounding country rocks with relatively low integrated water/rock ratios (less than 0.5 atom % oxygen) subsequently collapses in on a waning magmatic-hydrothermal system at about 350-200{degrees}C. These fluids generally have moderate to low salinities (less than 15 wt % equivalent NaCl). Differences among these deposits are probably in part related to variations in the relative importance of the meteoric-hydrothermal versus the magmatic-hydrothermal events. The sulphur comes from the intrusion and possibly also from the country rocks. Deposits in which meteoric or sea water is the dominant constituent of the hydrothermal fluids come from epizonal intrusive and sub-oceanic environments where the volcanic country rocks are fractured or well jointed and highly permeable. Integrated water/rock ratios are typically high, with minimum values of 0.5 or higher (atom % oxygen) -- the magmatic water contribution is often drowned out'. Salinities are low to very low (less than 10 wt % equivalent NaCl), and temperatures are usually in the range 350-150{degrees}C. The intrusion supplies the energy to drive the large-scale convective circulation system. The sulphur comes from the intrusion, the country rocks and/or the sea water. Argillic alteration, which occurs to depths of several hundred metres, generated during supergene weathering in many of these deposits is isotopically distinguishable from hydrothermal clays

Subsidence associated with the abstraction of fluids, 1988, Bell Fg,
Subsidence of the ground surface due to the withdrawal of groundwater, oil, gas or brine from sedimentary deposits has ccurred in many parts of the world. The abstraction of groundwater has been the principal cause of subsidence, primarily because more groundwater is abstracted than all the other liquids put together. Subsidences of several metres have been recorded, for example, in California due to the exploitation of oil, as well as groundwater. Such ground movements represent a notable problem in engineering geology. Generally these subsidences take place slowly but the occurrence at the surface of sinkholes as a result of water tables being lowered in limestone terrains is a rapid process. In the case of groundwater, gas or oil abstraction the reduction in pore pressure in the voids due to the decline in head leads to an increase in effective load on the sediments concerned, bringing about consolidation, which is reflected at the surface as subsidence. On the other hand when mineral deposits are worked by solution mining the rock material itself is removed which, if uncontrolled, resultsin subsidence. The removal of fluids from sediments frequently has resulted in the formation of fissures at the surface. Indeed there are cases on record where faults are alleged to have been formed. Such fissures often occur around the periphery of the subsidence trough

Chemical hydrogeology in natural and contaminated environments, 1989, Back W, Baedecker Mj,
Chemical hydrogeology, including organic and inorganic aspects, has contributed to an increased understanding of groundwater flow systems, geologic processes, and stressed environments. Most of the basic principles of inorganic-chemical hydrogeology were first established by investigations of organic-free, regional-scale systems for which simplifying assumptions could be made. The problems of groundwater contamination are causing a shift of emphasis to microscale systems that are dominated by organic-chemical reactions and that are providing an impetus for the study of naturally occurring and manmade organic material. Along with the decrease in scale, physical and chemical heterogeneity become major controls.Current investigations and those selected from the literature demonstrate that heterogeneity increases in importance as the study site decreases from regional-scale to macroscale to microscale. Increased understanding of regional-scale flow systems is demonstrated by selection of investigations of carbonate and volcanic aquifers to show how application of present-day concepts and techniques can identify controlling chemical reactions and determine their rates; identify groundwater flow paths and determine flow velocity; and determine aquifer characteristics. The role of chemical hydrogeology in understanding geologic processes of macroscale systems is exemplified by selection of investigations in coastal aquifers. Phenomena associated with the mixing zone generated by encroaching sea water include an increase in heterogeneity of permeability, diagenesis of minerals, and formation of geomorphic features, such as caves, lagoons, and bays. Ore deposits of manganese and uranium, along with a simulation model of ore-forming fluids, demonstrate the influence of heterogeneity and of organic compounds on geochemical reactions associated with genesis of mineral deposits. In microscale environments, importance of heterogeneity and consequences of organic reactions in determining the distributions and concentrations cf. constituents are provided by several studies, including infiltration of sewage effluent and migration of creosote in coastal plain aquifers. These studies show that heterogeneity and the dominance of organically controlled reactions greatly increase the complexity of investigations

Stable isotopic composition of the hydrothermal fluids responsible for the Nanisivik Zn-Pb deposits, Northwest Territories, Canada, 1991, Ghazban F. , Schwarcz H. P. , Ford D. C.

POST JURASSIC BRITTLE TECTONICS OF THE HAMMAM ZRIBA MINE (NORTHEASTERN TUNISIA) AND RELATED KARST AND FLUORINE, BARYTINE AND CELESTITE OCCURRENCES IN CARBONATE ENVIRONMENTS, 1991, Melki F. , Zargouni F. ,
The Hammam Zriba mine is located in a lenticular horst structure, of varying width (0.3 to 1 km) and NNW-SSE strike over about 3 kms. The mineralization is strata-bound at the top of massive Portlandian limestones and is overlain by embedded Middle to Upper Campanian limestones with marl intercalations. This horst has formed during the late Jurassic as an emerged block bound by major faults that were remobilized later during various deformation stages. These facts are clearly documented by field observations and tectonic analysis essentially along the N160-N180 trending faults in the Portlandian lithofacies. These fractures have also controlled the palaeomorphological framework of the uppermost part of the Portlandian massive facies. The overlying Campanian unit exhibits onlap structures that rest on the irregular eroded karstified and mineralized surface which forms a screen surface for the upward channelized fluids and mineral formations in karst and graben. Fluids were apparently channelized by faults trending N070-N090 and N160-180, a few hundred metres long, that have facilitated karst, dissolution and mineral deposition during tectonic events

DIAGENESIS AND MINERALIZATION PROCESSES IN DEVONIAN CARBONATE ROCKS OF THE SIDING-GUDAN LEAD-ZINC MINERAL SUBDISTRICT, GUANGXI, SOUTHWEST CHINA, 1991, Schneider W. , Geng A. Q. , Liu X. Z. ,
The lead-zinc ore deposits of the Siding-Gudan mineral subdistrict Guangxi are part of the large Nanling district of South China, and hosted in Devonian carbonate rocks. The ore bodies occur significantly along main faults and fault zones, and concentrate up to 300 meters above the Cambrian/Devonian unconformity. Connected with hydrothermal karst, size and volume of the ore bodies increase in proximity to this unconformity. Moving from the unaffected host rocks to the center of the ore bodies, four zones can be discriminated by the mineral assemblage (pyrite, sphalerite, galena) as well as by the degree of ordering, Ca/Mg, and Fe/Mn ratios of different dolomites. Homogenization temperatures range from 80-100-degrees-C (Presqu'ile dolomite) to 230-260-degrees-C (massive sphalerite). The sulfides reveal delta-S-34 = -20 to parts per thousand, and fluid inclusions display a salinity of 5-12 wt % equivalent NaCl. The diagenetic and hydrothermal history is similar to that of classic Mississippi Valley Type (MVT) sulfide mineral deposits as, for example, Pine Point in Canada. Mineralization and remobilization of the sulfides took place during a wide time span from late Paleozoic through Mesozoic. Both processes are considered as an interaction of saline basinal brines ascended from the adjoining dewatering trough, and magmatic-hydrothermal fluids of several magmatic-tectonic events

LATE-STAGE DOLOMITIZATION OF THE LOWER ORDOVICIAN ELLENBURGER GROUP, WEST TEXAS, 1991, Kupecz J. A. , Land L. S. ,
Petrography of the Lower Ordovician Ellenburger Group, both in deeply-buried subsurface cores and in outcrops which have never been deeply buried, documents five generations of dolomite, three generations of microquartz chert, and one generation of megaquartz. Regional periods of karstification serve to subdivide the dolomite into 'early-stage', which predates pre-Middle Ordovician karstification, and 'late-stage', which postdates pre-Middle Ordovician karstification and predates pre-Permian karstification. Approximately 10% of the dolomite in the Ellenburger Group is 'late-stage'. The earliest generation of late-stage dolomite, Dolomite-L1, is interpreted as a precursor to regional Dolomite-L2. L1 has been replaced by L2 and has similar trace element, O, C, and Sr isotopic signatures, and similar cathodoluminescence and backscattered electron images. It is possible to differentiate L1 from L2 only where cross-cutting relationships with chert are observed. Replacement Dolomite-L2 is associated with the grainstone, subarkose, and mixed carbonate-siliciclastic facies, and with karst breccias. The distribution of L2 is related to porosity and permeability which focused the flow of reactive fluids within the Ellenburger. Fluid inclusion data from megaquartz, interpreted to be cogenetic with Dolomite-L2, yield a mean temperature of homogenization of 85 6-degrees-C. On the basis of temperature/delta-O-18-water plots, temperatures of dolomitization ranged from approximately 60 to 110-degrees-C. Given estimates of maximum burial of the Ellenburger Group, these temperatures cannot be due to burial alone and are interpreted to be the result of migration of hot fluids into the area. A contour map of delta-O-18 from replacement Dolomite-L2 suggests a regional trend consistent with derivation of fluids from the Ouachita Orogenic Belt. The timing and direction of fluid migration associated with the Ouachita Orogeny are consistent with the timing and distribution of late-stage dolomite. Post-dating Dolomite-L2 are two generations of dolomite cement (C1 and C2) that are most abundant in karst breccias and are also associated with fractures, subarkoses and grainstones. Sr-87/Sr-86 data from L2, C1, and C2 suggest rock-buffering relative to Sr within Dolomite-L2 (and a retention of a Lower Ordovician seawater signature), while cements C1 and C2 became increasingly radiogenic. It is hypothesized that reactive fluids were Pennsylvanian pore fluids derived from basinal siliciclastics. The precipitating fluid evolved relative to Sr-87/Sr-86 from an initial Pennsylvanian seawater signature to radiogenic values; this evolution is due to increasing temperature and a concomitant evolution in pore-water geochemistry in the dominantly siliciclastic Pennsylvanian section. A possible source of Mg for late-stage dolomite is interpreted to be from the dissolution of early-stage dolomite by reactive basinal fluids

LATE TO POSTHERCYNIAN HYDROTHERMAL ACTIVITY AND MINERALIZATION IN SOUTHWEST SARDINIA (ITALY), 1992, Boni M, Iannace A, Koppel V, Fruhgreen G, Hansmann W,
Several kinds of base metal deposits occur in the lower Paleozoic of southwest Sardinia (Iglesiente-Sulcis mineral district). This paper deals with those deposits which are generally referred to as Permo-Triassic, because they accompany and postdate the Hercynian orogeny and are related to magmatic activity. A large number of previously published geochemical data, integrated with additional new data (Sr, Pb, O, C, and S isotopes), are reviewed and discussed in the frame of the late to post-Hercynian geologic evolution of southwest Sardinia. According to geological and mineralogical characteristics, three types of deposits can be distinguished: (1) skarn ores related to late Hercynian leucogranitic intrusions, (2) high-temperature veins, and (3) low-temperature veins and karst filling. Pervasive epigenetic dolomitization phenomena are geochemically related to the low-temperature deposits. Sr and Pb isotopes of the first and second types (0.7097-0.7140 Sr-87/Sr-86; 17.97-18.29 Pb-206/Pb-204; 38.11-38.45 Pb-208/Pb-204) are distinctly more radiogenic than those of the third type (0.7094-0.7115 Sr-87/Sr-86; 17.86-18.05 Pb-206/Pb-204; 37.95-38.19 Pb-208/Pb-204) which, in turn, are closer to Paleozoic ores and carbonates. Fluid inclusion data indicate that the fluids responsible for mineralization of the first and second types of deposits were hot and dilute (T(h)= 370-degrees-140-degrees-C; <5 wt % NaCl equiv). In contrast, relatively colder and very saline fluids (T(h)= 140-degrees-70-degrees-C; >20 wt % NaCl equiv) were responsible for the third type of mineralization, as well for epigenetic dolomitization of the Cambrian host rocks. O isotopes measured in minerals from the first two types (deltaO-18SMOW = 12.8-18.9 parts per thousand) are O-18 depleted with respect to the third type (deltaO-18SMOW = 15.9-22.1 parts per thousand). These data, coupled with fluid inclusion formation temperatures, indicate that the fluids responsible for the first two types of mineralization were O-18 enriched with respect to those of the third type and related hydrothermal phenomena. The deltaS-34CDT in sulfides of the first two types vary between 3.7 and 10.73 per mil, whereas the values of the third type range from 12.0 to 17.9 per mil. Late to post-Hercynian mineralization is thus explained as the result of three distinct, though partly superimposed, hydrothermal systems. System 1 developed closer to the late Hercynian leucogranitic intrusions and led to the formation of the first and subsequently the second type of mineralization. The relatively hot and diluted fluids had a heated meteoric, or even partly magmatic, origin. Metals were leached from an external, radiogenic source, represented either by Hercynian leucogranites or by Paleozoic metasediments. Sulfur had a partly magmatic signature. System 2 was characterized by very saline, colder fluids which promoted dolomitization, silicification, and vein and karst mineralization. These fluids share the typical characteristics of formation waters, even though their origins remain highly speculative. The hydrothermal system was mainly rock dominated, with only a minor participation of the external radiogenic source of metals. Sulfur was derived by recirculation of pre-Hercynian strata-bound ores. System 3 records the invasion of fresh and cold meteoric waters which precipitated only minor ore and calcite gangue. It may represent the further evolution of system 2, possibly spanning a time well after the Permo-Triassic. The timing of all these phenomena is still questionable, due to the poor geologic record of the Permo-Triassic in southwest Sardinia. Nevertheless, the hypothesized scenario bears many similarities with hydrothermal processes documented throughout the Hercynian in Europe and spanning the same time interval. A comparison with the latter mineralization and hydrothermal activities leads to the hypothesis that the first two types of mineralization are linked to late Hercynian magmatic activity, whereas the third type may be related to either strike-slip or tensional tectonics which, throughout Europe mark the transition from the Hercynian orogeny to the Alpine cycle

Origin of sulphur in minerals and fluids from Latium (Italy); isotopic constraints, 1992, Cavarretta G, Lombardi G,

THE OCCURRENCE AND EFFECT OF SULFATE REDUCTION AND SULFIDE OXIDATION ON COASTAL LIMESTONE DISSOLUTION IN YUCATAN CENOTES, 1993, Stoessell R. K. , Moore Y. H. , Coke J. G. ,
Dissolution of carbonate minerals in the coastal halocline is taking place in the karst terrain along the northeastern coast of the Yucatan Peninsula. The dissolution is being accelerated in cenotes (sinkholes) where sulfate reduction and oxidation of the produced sulfide is occurring. Hydrogen-sulfide concentrations ranged from 0.06 to 4 mmolal within the halocline in two sinkholes. Relative to concentrations expected by conservative mixing, fluids with high hydrogen-sulfide concentrations were correlated with low sulfate concentrations, high alkalinities, low pH values, and heavy sulfur isotope values for sulfate. Hydrogen-sulfide concentrations were less than those predicted from sulfate reduction, calculated from deficiencies in measured sulfate concentrations, indicating mobility and loss of aqueous sulfide. Fluids with low hydrogen-sulfide concentrations were correlated with very high calcium concentrations, high strontium and sulfate concentrations, slightly elevated alkalinities, low pH values, and sea-water sulfur isotope values for sulfate. Gypsum dissolution is supported by the sulfur isotopes as the major process producing high sulfate concentrations. However, oxidation of aqueous sulfide to sulfuric acid, resulting in carbonate-mineral dissolution is needed to explain the calcium concentrations, low pH values, and only slightly elevated alkalinities. The halocline may trap hydrogen sulfide that has been stripped from the underlying anoxic salt water. The halocline can act as a stable, physical boundary, holding some of the hydrogen sulfide until it is oxidized back to sulfuric acid through interaction with the overlying, oxygenated fresh water or through the activity of sulfide-oxidizing bacteria

RELATIONSHIP BETWEEN FRACTURES AND KARSTIFICATION - THE OIL-BEARING PALEOKARST OF ROSPO MARE (ITALY), 1994, Soudet H. J. , Sorriaux P. , Rolando J. P. ,
The Rospo Mare oil field is located in the Adriatic Sea, 20 km off the Italian coast. The reservoir lies at a depth of 1300 m and consists of a paleokarst oi Oligocene to Miocene age which developed within Cretaceous limestones, now covered by 1200 m of Mio-Pliocene sequences. The oil column is about 140 m 8 high. The karstic nature of the reservoir was identified through vertical, cored drill holes which allowed us to analyse the various solution features and the sedimentary infilling (speleothems, terra rossa, marine clays), as well as their vertical distribution. Erosion morphology at the top of the karst is highly irregular, including in particular paleovalleys as well as many pit-shaped sink holes. Detailed geophysical knowledge of that morphology helped to optimize the development of the field through horizontal drilling. Observations concerning the upper part of the reservoir were compared to a palaeokarst of the same age, outcropping widely onshore, in quarries located nearby. The Rospo Mare paleokarst is an integral part of the ante Miocene paleokarst assemblages of the periphery of the Mediterranean which were formed in tropical conditions. Only the fractures enhanced by meteoric water during the formation of the karat are important for reservoir connectivity. During the formation of the karst there were several phases of dissolution and infilling which modified the geometry of the open fissures and only these fractures play an important role in the reservoir drainage. Vertically we can distinguish three very different zones from top to bottom: at the top the epikarst (0-35 m) in a zone of extension. All the fractures have been enlarged by dissolution but the amount of infilling by clay is substantial. The clays are derived either from alteration of the karat fabric or by deposition during the Miocene transgression; the percolation zone (15-45 m) is characterized by its network of large fractures vertically enlarged by dissolution which corresponds to the relict absorption zones in the paleokarst. These fractures, which usually have a pluridecametric spacing, connect the epi-karst with the former sub-horizontal river system. This zone has been intersected by the horizontal wells during the field development. In this zone there are local, horizontal barriers oi impermeable clay which can block vertical transmissibility. In these low permeability zones the vertical fractures have not been enlarged due to dissolution hence the horizontal barrier; the zone of underground rivers (35-70 m) is characterized by numerous horizontal galleries which housed the subterranean ground water circulation. When these fissures are plurimetric in extent this can lead to gallery collapse with the associated fill by rock fall breccia. This can partly block the river system but always leaves a higher zone of free circulation with high permeabilities of several hundreds of Darcys. These galleries form along the natural fracture system relative to the paleohydraulic gradient which in some cases has been preserved. The zone below permanent ground water level with no circulation of fluids is characterized by dissolution limited to non-connected vugs. Very locally these fissures can be enlarged by tectonic fractures which are non-connected and unimportant for reservoir drainage. Laterally, only the uppermost zone can be resolved by seismic imaging linked with horizontal well data (the wells are located at the top of the percolation zone). The Rospo Mare reservoir shows three distinct horizontal zones: a relict paleokarst plateau with a high index of open connected fractures, (area around the A and B platforms); a zone bordering the plateau (to the north-east of the plateau zone) very karstified but intensely infilled by cap rock shales (Miocene - Oligocene age); a zone of intensely disturbed and irregular karst paleotopography which has been totally infilled by shales. The performance of the production wells is dependent on their position with respect to the three zones noted above and their distance from local irregularities in the karst paleotopography (dolines, paleovalleys)

Results 1 to 15 of 153
You probably didn't submit anything to search for