KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Search in KarstBase
Your search for gas (Keyword) returned 310 results for the whole karstbase:
Showing 1 to 15 of 310
![]() |
![]() |
The Cayman Islands, a small dependency of the British Empire, with a local government controlled by the Government of Jamaica, occupy an isolated position of exceptional interest, both geographical and geological, in the Caribbean Sea. Situated between Jamaica and Cuba, and flanked on the south by the great depression of the Bartlett Trough, which descends over 20,000 feet within 18 miles of the shores of Grand Cayman, they are the only projecting peaks in the submarine ridge that extends from the Sierra Maestra of Cuba to the Misteriosa Bank in the direction of British Honduras. This ridge, though a recognized submarine feature, is irregular, and a depression of 7000 feet lies in it between Grand Cayman and the Lesser Caymans. The dependency consists of three islands, of which the two smaller, Cayman Brac and Little Cayman, are separated by only 4 miles of sea, while the third, Grand Cayman, is about 60 miles away. Cayman Brac is situated about 125 miles north-west of Montego Bay (Jamaica), and Grand Cayman lies 178 miles west-north-west of Negril Point, the nearest point of Jamaica, and about 150 miles from the Isle of Pines (Cuba). The combined area of the three islands is about 100 square miles. Columbus discovered the Lesser Caymans in 1503, and named them Las Tortugas', as the shores were swarming with turtle. Grand Cayman was discovered at some later unknown date, and is first recorded in history as being in the occupation of Spanish buccaneers. Europeans appear to have been ... This 250-word extract was created in the absence of an abstract
In Yugoslavia there are 5 species of the Genus Spelaeodiscus (Gastropoda, Pulmonata): Sp. hauffeni (F. Schmidt), Sp. triaria (Rossmàssler), Sp. albanicus (A. J. Wagner), Sp. unidentatus Bole and Sp. obodensis sp. n., decribed here. The anatomical researches on Sp. hauffeni (F. Schmidt) and Sp. unidentatus Bole have proved that they belong to the family of the Pupillidae and not to the one of the Valloniidae. This fact confirms the opinion of Hudec, according to whom the genus Spelaeodiscus belongs to the family of the Pupillidae.
After an introduction, comprising a historical summary on the researches on well fauna, a description of the study area in which 13 water wells have been investigated is given. The authors explain the adopted working method and indicate the physical and chemical characteristics of the waters (temperature, pH, alkalinity, hardness, O2-content, fixed residuum, suspended matter, N2O5, P2O5, NaC1, Ca, Fe). The fauna of the wells of Mehadia (see systematic part) is composed of 34 species: 1 Triclade, 3 Oligochaeta, 2 Gastropods, 5 Cladocera, 1 Ostracod, 3 Copepods, 4 Isopods, 2 Amphipods, 1 Halacarida, 1 Collembola, empty puppies of a Trichoptera, 2 Coleoptera and 8 Diptera (larves and nympha). Among these species 15% can be considered phreatobionts: a blind Triclade (not identified), Candona eremita Vejd., Asellus (Proasellus) danubialis Lt. & M. Codr., Asellus (Proasellus) elegans Lt. & M. Codr., Niphargus jovanovici bajuvaricus Schell. and Niphargopsis trispinosus Dancau & Capuse. The remaining 28 species, counting for 85%, belong to the phreatoxenes. It is worth to mention that Vejdovsky (1882) in wells near Prague, Jaworowski (1895) in wells of Cracovia and of Lwov, Moniez (1888, 1889) in wells in North-East France and Chappuis (1922) in those close to Bale, have found a much smaller proportion of phreatobe forma (e.g. Chappuis 2%).
A freshwater gastropod, Pachycheilus glaphyrus, responsible for unusual erosion in limestone has been located in southern British Honduras where it is abundant in streams flowing through areas of karst topography. These snails ingest algae that proliferate in solution grooves formed at the fluctuating air-water interface. Rasping action of the radula results in deepening of these grooves and appears to improve the algal habitat
The Mammoth Cave system includes more than 175 kilometers of explored passages in Mammoth Cave National Park, Kentucky. Although biologists have explored the caves intermittently since 1822, the inventory of living organisms in the system is still incomplete. The present study lists approximately 200 species of animals, 67 species of algae, 27 species of fungi, and 7 species of twilight-zone bryophytes. The fauna is composed of 22% troglobites, 36% troglophiles, 22% trogloxenes, and 20% accidentals, and includes protozoans, sponges, triclads, nematodes, nematomorphs, rotifers, oligochaetes, gastropods, cladocerans, copepods, ostracods, isopods, amphipods, decapods, pseudoscorpions, opilionids, spiders, mites and ticks, tardigrades, millipedes, centipedes, collembolans, diplurans, thysanurans, cave crickets, hemipterans, psocids, moths, flies, fleas, beetles, fishes, amphibians, birds, and mammals. The Mammoth Cave community has evolved throughout the Pleistocene concomitantly with development of the cave system. The troglobitic fauna is derived from 4 sources: (1) troglobite speciation in situ in the system itself; (2) dispersal along a north Pennyroyal plateau corridor; (3) dispersal along a south Pennyroyal plateau corridor; and (4) dispersal across the southwest slope of the Cumberland saddle merokarst.
The Mammoth Cave system includes more than 175 kilometers of explored passages in Mammoth Cave National Park, Kentucky. Although biologists have explored the caves intermittently since 1822, the inventory of living organisms in the system is still incomplete. The present study lists approximately 200 species of animals, 67 species of algae, 27 species of fungi, and 7 species of twilight-zone bryophytes. The fauna is composed of 22% troglobites, 36% troglophiles, 22% trogloxenes, and 20% accidentals, and includes protozoans, sponges, triclads, nematodes, nematomorphs, rotifers, oligochaetes, gastropods, cladocerans, copepods, ostracods, isopods, amphipods, decapods, pseudoscorpions, opilionids, spiders, mites and ticks, tardigrades, millipedes, centipedes, collembolans, diplurans, thysanurans, cave crickets, hemipterans, psocids, moths, flies, fleas, beetles, fishes, amphibians, birds, and mammals. The Mammoth Cave community has evolved throughout the Pleistocene concomitantly with development of the cave system. The troglobitic fauna is derived from 4 sources: (1) troglobite speciation in situ in the system itself; (2) dispersal along a north Pennyroyal plateau corridor; (3) dispersal along a south Pennyroyal plateau corridor; and (4) dispersal across the southwest slope of the Cumberland saddle merokarst.
Results 1 to 15 of 310
![]() |
![]() |
You probably didn't submit anything to search for