Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That waterlogged is water saturated.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for goethite (Keyword) returned 22 results for the whole karstbase:
Showing 1 to 15 of 22
On the Wad-Minerals from the Cavern Environment., 1983, Kashima Naruhiko
The wad-minerals from limestone caves of Yugoslavia, China and Japan were studied. X-ray diffraction analysis revealed five minerals; birnessite, 10A-manganite, pyrolusite, todorokite and goethite. The heavy metal elements, Mn, Zn, Fe and Cr have been detected by X-ray fluorescence analysis and their contents were roughly determined. The condensation water introduced directly from the covering soils formed by the continental weathering and the deriving corrosive water interaction with limestone could be the input sources of manganese and other metal elements into the system.

The induration process of goethitic oxisols on peridotites in New Caledonia: A singular plinthite-type process of induration, 1996, Podwojewski P. , Bourdon E. ,
The strong chemical weathering of peridotites in New Caledonia generates goethitic oxisols acid a karstic relief. A rapid decrease of a water-table at the bottom of a doline leads to a rapid, massive and continuous induration of iron oxide at the interface between an oxidizing and a reducing environment. Goethite precipitates in a reticular network, pseudomorphs after plant cells and could be associated with lepidocrocite, siderite and rhodochrosite. These hardpans could not be strictly considered as ferricretes

Presence of Rare-Earth Elements in Black Ferromanganese Coatings from V?ntului Cave (Romania), 1997, Onac, B. P. , Pedersen, R. B. , Tysseland, M.
This study examines the rare-earth elements (REEs) found in ferromanganese coatings covering both sandy alluvium and submerged boulders in an underground stream from V?ntului Cave, Romania. The black ferromanganese sediments are mainly composed of birnessite and other poorly-crystallized manganese oxide and hydroxides (pyrolusite, romanechite, todorokite, rhodochrosite) as well as goethite and kaolinite. Scanning electron microscope and EDX analyses performed on the black ferromanganese sediments show the material to have concentrated considerable amounts of REEs (La, Ce, Sm, Nd) in iron-rich spheres that build up botryoidal-like aggregates. The correlation of 143Nd/144Nd ratio for 6 different samples indicates that the REEs were concentrated in the cave environment after being leached from bauxitic and red residual clays from above the cave. Based on our observations, we conclude that an increase in pH resulted in adsorption of REE onto the surface of ferromanganese minerals. This study demonstrates the potential of using Nd isotopes as a tool for paleochemistry studies of the cave environment.

A mineralogical analysis of karst sediments and its implications to the middle-late Pleistocene climatic changes on the Tibetan Plateau, 1998, Zhang D. D. ,
The minerals in various categories of Tibetan karst sediments were divided into three groups: carbonate, iron and silicate. The carbonate minerals, including calcite, aragonite and dolomite, consist mainly of speleothem, tufa and sinter. Most of the speleothems indicates wetter and warmer periods in early and middle Pleistocene, the youngest being 194,000 years old. The second formation of carbonate mineral, tufa, implies an arid period starting 91,000 years BP. The iron minerals, goethite and hematite, are often mixed up with cave alluvial sediments that are interbedded with flowstones, and the depression sediments. They indicate strong oxidizing environments during their deposition, which is absent at present. The clay minerals, specially kaolinite, were contained in cave alluvial, flowstone and the depression sediments as well. Combined with stratigraphic study and U-series dating, the mineral analysis shows that warmer and wetter climates, which were suitable for speleothem development, probably disappeared 200 ka ago, and drier and colder climates dominated this plateau since then

Cave fill in the Črnotiče Quarry, SW Slovenia: palaeomagnetic, mineralogical and geochemical study, 1999, Bosá, K Pavel, Mihevc Andrej, Pruner Petr, Melka Karel, Venhodová, Daniela, Langrová, Anna

A fossil cave, filled with cave sediments was open in the Črnotiče Quarry. An about 1.75 m high section was analysed. Profile consists of banded carbonate rocks intercalated by red clays which was deposited on corroded/eroded surface of older speleothems. Banded and laminated carbonate rocks are composed of recrystallized calcilutite resemble freshwater limestones. Characteristics of lamination could indicate its origin from organic-rich films. Red clays are composed of quartz, smectite, vermiculite, gibbsite, pM kaolinite, goethite, anatase, rutile, haematite, calcite, micas and feldspar. They contain pellets with Mn hydroxyoxides. That red clays are weathering products redeposited in water-saturated environment. Samples are characterised by intermediate up to high magnetic values of Jn which is caused by the presence of high amount of Fe-minerals. Mean palaeomagnetic directions are for the group of normal palaeomagnetic polarity equal to D = 10.6°; I = 55.0°, and for the group of reverse polarity than D = 173.0°; I = -31.3°. The top part of the profile shows reverse palaeomagnetic direction interrupted by two normal magnetised zones. According to the arrangement of individual magnetozones we assume, that the top of the highest normal polarised magnetozone could be correlated with the Olduvai event (1.76/1.79 Ma) as the youngest possibility, and therefore the rest of profile must be older.

Lechuguilla Cave is a hypogene cave formed by oxidation of ascending hydrogen sulfide from the Delaware Basin. A unique sediment deposit with characteristics suggesting derivation from the land surface, some 285 m above, was investigated. At this location, the observed stratigraphy (oldest to youngest) was: bedrock floor (limestone), cave clouds (secondary calcite), calcite-cemented silstone, finely laminated clay, and calcite rafts. Grain-size analysis indicates that the laminated clay deposits are composed of 59-82% clay-size minerals. The major minerals of the clay were determined by X-ray diffraction analysis and consist of interstratified illite-smectite, kaolinite, illite, goethite, and quartz. Scanning electron microscopy observations show that most of the clay deposit is composed of densely packed irregular-shaped clay-size flakes. One sample from the top of the deposit was detrital, containing well-rounded, silt-size particles. Surface soils are probably the source of the clay minerals. The small amount of sand- and silt-size particles suggests that detrital particles were transported in suspension. The lack of endellite and alunite is evidence that the clays were emplaced after the sulfuric-acid dissolution stage of cave formation. Fossil evidence also suggests a previously existing link to the surface

Geochemical and mineralogical characteristics of Fe-Ni- and bauxitic-laterite deposits of Greece, 2000, Eliopoulos Dg, Economoueliopoulos M,
Contiguous vertical sample profiles from Ni-laterite deposits with in situ features (Kastoria, Profitis Ilias, and Tsouka) and allochthonous Ni- and bauxitic-laterite deposits in contact with basement limestone (Nissi) and bauxitic-laterites lying on peridorite (Parhari) were analyzed for major, trace (including Tn and U), rare earth and platinum-group elements (REE and PGE, respectively). In addition, minerals with emphasis to chromite grains found as residual components in these laterites, inherited from the ophiolitic parent rocks, were analyzed by microprobe. Low Al2O3, TiO2, REE, Th and U contents are common features of the Kastoria, Bitincka and Tsouka deposits. Tn contrast, elevated REE contents are present in the karst-type bauxitic- and Ni-laterite ores of Nissi and bauxitic-laterites of Parhari. The bauxitic-laterite deposit of Nissi attains REE contents of thousands parts per million in samples from the contact between the lowest part of the bauxitic-laterite and the footwall limestone. Highest contents of Th and U are found in the bauxitic-laterites, with Th ranging from 4 to 28 ppm and U from 4 to 66 ppm. In general, increasing Al contents are accompanied by elevated Ti, REE, Tn and U contents at the Parhari and Nissi laterite deposits. Goethite, is the dominant mineral in all Ni-laterite profiles studied, while boehmite co-existing with goethite is common in the bauxitic-laterites at Nissi and Parhari. Goethite exhibits variable Al contents, while the Al/Fe ratio increases towards the top of the profiles. The PGE concentrations are generally low, ranging from less than 100 ppb to a few hundred parts per billion. The lowest values - lower than in the bedrock - were recorded in the saprolite zone. A certain enrichment in Pt (up to 48 ppb), Pd (7 ppb), and Au (16 ppb) is recorded in the reddish altered peridotite overlying the saprolite zone at Profitis Ilias. The Fe-Ni ore overlying the reddish altered peridotite has the highest Os values (14 ppb), Ir (32 ppb), Ru (66 ppb), Rh (20 ppb), Pt (86 ppb), and Pd (186 ppb). Gold contents are below 36 ppb. An increasing Pt/Pd ratio from 3.0 in Fe-Ni-laterites to 6.0 in bauxitic-laterites is apparent. Both whole rock compositions and mineral chemistry of laterites indicate that major controlling factors of the composition of the bauxitic-laterites are the conditions during transportation/deposition of the weathered material and during diagenesis/metadiagenesis stage rather than parent mafic ophiolitic rocks. The comparison between the primary composition of chromite in the saprolite zone and the overlying Fe-Ni ore may provide evidence for the discrimination between Fe-Ni ore linked to in situ weathering and ore derived by transportation to some extent of elastic and chemical material. (C) 2000 Elsevier Science B.V. All rights reserved

Sedimentology and geochemistry of fluvio-lacustrine tufa deposits controlled by evaporite solution subsidence in the central Ebro Depression, NE Spain, 2000, Arenas C, Gutierrez F, Osacar C, Sancho C,
The Urrea de Jalon tufa deposits constitute the 20- to 50-m-thick caprock (0.3 km(2)) of an isolated mesa. They disconformably overlie horizontal strata of the Tertiary Ebro Basin (NE Spain), which contains a thick succession of lacustrine gypsum and marls, followed by limestones, marls and, locally, fluvial sandstones and mudstones. The tufa deposits show a complex, large-scale framework of basin-like structures with centripetal dips that decrease progressively from the base to the top of the tufa succession, and beds that thicken towards the centre of the structure (cumulative wedge-out systems). These geometries reveal that the tufa deposits were affected by differential synsedimentary subsidence. Distinct onlapping depressions reflect time migration of the subsiding areas. The studied carbonates are composed mostly of low-Mg calcite, with minor quartz. Some samples have anomalously high contents of Fe, Mn and Ba that may exceed 1% (goethite, haematite and barite are present). Carbonate facies are: (a) macrophyte encrustation deposits; (b) bryophyte build-ups; (c) oncolite and coated grain rudstones; (d) non-concentric stromatolite-like structures; (e) massive or bioturbated biomicrites; and (f) green and grey marls. Facies a and c show a great variety of microbial-related forms. These facies can be arranged in dm- to 2-m-thick vertical associations representing: (i) fluvial-paludal sequences with bryophyte growths; (ii) pond-influenced fluvial sequences; and (iii) lacustrine-palustrine sequences. The Urrea de Jalon tufa deposits formed in a fluvio-lacustrine environment that received little alluvial sediment supply. Isotope compositions (delta(13)C and delta(18)O) reveal meteoric signatures and accord with such a hydrologically open system of fresh waters. The Fe, Mn and Ba contents suggest an additional supply of mineralized waters that could be related to springs. These would have been discharge points in the Ebro Depression of a regional aquifer of the Iberian Ranges. Rising groundwater caused the solution of the underlying evaporites and the synsedimentary subsidence of the tufa deposits

Iron oxide-rich filaments: Possible fossil bacteria in Lechuguilla Cave, New Mexico, 2001, Provencio P. P. , Polyak V. J. ,
Reddish filaments in two fragments of unusual iron oxide bearing stalactites, 'the Rusticles' from Lechuguilla Cave, New Mexico, are found only within the central canals of the Rusticles. The curved, helical, and/or vibrioidal filaments vary from 1 to 6 mum in outer diameter and 10 to >50 mum in length. SEM and TEM show the filaments have 0.5-mum diameter central tubes, with goethite crystals radiating outwardly along their lengths. The diameter of the central tubes is consistent with the diameter of many iron-oxidizing filamentous bacteria. Although most iron oxide depositing bacteria do not deposit well-crystallized radiating goethite, we propose thick hydrous iron oxide was slowly crystallized from amorphous material to goethite, in place, over a relatively long period of time. From the gross morphology and the particular setting, we suggest this represents an occurrence of fossilized, acidophilic iron-oxidizing bacteria

Caves formed within Upper Cretaceous skarns at Baita, Bihor County, Romania: Mineral deposition and speleogenesis, 2002, Onac B. P. ,
The Baita metallogenic district, in Bihor County, Romania, is genetically connected to a deep-seated Upper Cretaceous granitic pluton. Within this district, several bodies of skarn host economic concentrations of Mo, W, Bi, Cu, Pb, Zn, B, wollastonite, and marble. During mining, numerous karst cavities were encountered. Minerals such as wittichenite, antimonian luzonite, natrolite, quartz, chalcanthite, rosasite, glaukosphaerite, aurichalcite, azurite, malachite, norsethite and, more commonly, calcite, aragonite, hydromagnesite, and goethite were found within these skarn-hosted caves as crusts, coralloids, minute crystals, aggregates, and earthy masses. Some of the minerals are of hydrothermal origin, whereas others are interpreted to have formed during episodes of hydrothermal or vadose alteration. A third group consists of minerals that were precipitated from low-temperature karstic waters. Although most skarn-hosted cavities exhibit the classical features of meteoric-water-induced cave, their mineralization, morphology, and position within the skarn support a hydrothermal or a mixed hydrothermal-vadose origin

The Genesis of the Hope Downs Iron Ore Deposit, Hamersley Province, Western Australia, 2006, Lascelles Desmond F. ,
The banded iron formation (BIF)-hosted Hope Downs high-grade hematite ore deposits are situated within the Marra Mamba Iron Formation with subsidiary deposits in the Brockman Iron Formation of the Archean to Proterozoic Hamersley Group of Western Australia. The main orebody extends to 260 m below the surface and is unusually rich in martite (pseudomorphous hematite after magnetite) and poor in limonite and goethite compared to other ore deposits of the Marra Mamba Iron Formation. The high-grade hematite ore is mainly within the Newman Member but also occurs in parts of the Nammuldi Member together with low-grade limonitic ore that becomes high grade after calcining. Karst erosion of the overlying Wittenoom Formation has produced steep-sided buried valleys adjacent to the in situ orebodies that contain thick deposits (<160 m) of goethitic and sideritic sediments, including remnants of Robe Pisolite Formation, bedded siderite, hematite gravels, red ochreous detrital material, and enriched scree deposits that are additional sources of ore. The ore consists of low phosphorous martite-limonite-goethite derived from chert-free BIF by supergene weathering. No evidence of the complete carbonate replacement of chert has been found at Hope Downs nor were any traces of preexisting chert bands seen in the ore, despite the abundance of chert bands in BIF elsewhere. A variety of textures and composition shown by cherty BIF adjacent to the orebodies is described from which the origin of the chert-free BIF is inferred, including sedimentary structures consistent with density-current deposition. A model is presented for the origin of the host iron formation and the ore deposits, in which density currents transported reworked iron silicates and hydroxides in colloidal suspension onto an unstable sea floor. The amorphous silica produced during diagenesis of Al-poor iron silicates formed the characteristic chert bands of BIF but some of the hydrous amorphous silica was lost prior to lithification to form chert-free BIF. Weathering of the chert-free BIF produced the high-grade hematite ore that is exposed today


In this study the iron ore deposit of the historic Warda mine (District of Ajloun, Northern Jordan) and its speleological im­portance is discussed. The number of known dissolutional caves in Jordan is very low, in spite of the fact, that large sections of the country are underlain by Cretaceous limestone. The only large cave yet discovered is Al-Daher Cave, a hypogene maze cave (Kempe et al. 2006). The Warda Iron Deposit was mined during the time of the crusades by one of Saladin’s officers to build and stock the castle of Ajloun. The survey shows that the mine consists of two larger rooms, together about 1000 m2 in area. Much of the mine’s floor is now covered with recent flood sediments (680 m2), up to over 2 m deep. The mine cuts natural cavities, fissures with speleothems and a collapse hall in lime­stone, that may or may not have been created by a collapsed mine ceiling. Calculating the mine volume conservatively, a to­tal of about 1100 t of elemental iron may have been extracted. Mineralogical investigation (XRD) shows, that the iron ore is goethitic/limonitic with noticeable hematite contents. Geo­chemical (XRF) analysis shows that the goethite is very pure; impurities of main elements sum up to 1% only. Among the trace-elements W (248 ppm), As (168 ppm) and Co (124 ppm) show the highest concentrations, with all others < 37 (Ba) ppm. Former prospecting results show that the deposit has a spatial extent of 300 x 200 m with a maximal thickness of about 10 m. Textural, mineralogical and geochemical criteria suggest that the ore body could be of speleogene origin, i.e. deposited in a hypogene, deep phreathic setting, possibly before regional up­lift or even prior to the maximal burial depth. A possibly simi­lar ore-body is for example described from the gigantic Lower Cretaceous and sand-filled cave of Wlfrath (North Rhine-Westphalia, Germany) (Drozdzewski et al. 1998).

Black Mn-Fe Crusts as Markers of Abrupt Palaeoenvironmental Changes in El Soplao Cave (Cantabria, Spain), 2011, Gzquez Fernando, Calaforra Jose Maria, Forti Paolo

Peculiar iron and manganese deposits coating walls, floors and ceilings of many galleries are one of the special features of the El Soplao Cave (Cantabria, Spain). These speleothems appear to have been deposited over wall clay deposits, as well as forming part of flowstones. Structure of crusts is essentially amorphous but several manganese and iron oxides were identified like goethite and birnessite, though all occur with a low degree of crystallinity. In the outer layer of the crusts, alteration iron minerals appear that derive from previous minerals in a process probably mediated by microorganisms. EDX microanalyses report fairly high values of Fe and Mn in the crusts, though the Mn/Fe ratio varies considerably as a function of distance from the substrate/bedrock. The present study proposes a genetic model for crust speleothems in El Soplao, based on oscillations of the phreatic level. The origin of these deposits is related to mobilization, under phreatic conditions, of polymetallic sulfides in the host rock. Metal ions (including Fe²⁺ and Mn²⁺) released into the cave under reducing conditions, are oxidized and fixed in a process mediated by bacteria, giving rise to oxides and hydroxides of low crystallinity. The presence of various black intercalated layers in aragonite flowstones indicate periods when cave conditions suddenly changed from vadose, when aragonite is precipitated, to phreatic and epiphreatic conditions, when the Mn-Fe deposits are precipitated. Subsequently, vadose conditions were re-established, leading to the final stages of precipitation of aragonite recorded in the flowstone and recent aragonite helictites on the surface of the Mn-Fe crusts.

Mineralogy of Iza Cave (Rodnei Mountains, N. Romania), 2011, Tă, Maş, Tudor, Kristly Ferenc, Barbutudoran Lucian

The secondary minerals from Iza Cave result from the interactions of karst water and/or cave atmosphere over a variety of sedimentary and metamorphic rocks. The cave passages expose at various extents Eocene limestones and conglomerates, Oligocene black shales, Upper Precambrian micaschists, marble and dolomitic marble and associated ore deposits.
Twelve secondary minerals identified in the cave (carbonates, sulfates, phosphates, oxides and hydroxides, and silicates) are presented in this study. Calcite, aragonite, gypsum, brushite and hydroxylapatite are the components of common speleothems in the limestone, dolomite and conglomerate areas of the cave. Ankerite crusts are related to areas with pyrite mineralization within the metamorphic carbonate rocks. Goethite, jarosite, hematite and gypsum form various speleothems in the sectors within micaschists and conglomerates. Large weathering deposits occurring in passage areas developed within micaschists consist of illite, kaolinite, jarosite, goethite, gypsum and alunite. The extent of the weathering deposits occurring on non-karst rocks in the underground environment makes this cave a particularly interesting site for studies of water-rock interactions.


A cave of hydrothermal origin in crystalline limestone has been investigated near Sklene Teplice Spa in the Stiavnicke vrchy Mts. located in Central Slovakia. Metamorphozed Middle Triassic carbonate rocks occur as a horizon in pre-volcanic basement of Middle Miocene volcanic formations. The hydrothermal origin of studied cave is documented by spherical and irregural oval phreatic morphology sculptured by ascending thermal water, metamorphic type of the host rocks and their hydrothermal alteration, occurrence of large calcite and quartz crystals, and hydrothermal clays with three mineral smectite-kaolinite, illite and goethite associations. The primary phases of speleogenesis in the crystalline limestones was caused by hydrothermal processes linked either to the emplacement of granodiorite subvolcanic intrusions during the Late Badenian time or to epithermal system of the Late Sarmatian time in the central zone of the Stiavnica stratovolcano. The described cave presents the remarkable' example of hydrothermal limestone cave associated with Miocene volcanism and magmatic intrusions in Central Slovakia.

Results 1 to 15 of 22
You probably didn't submit anything to search for