Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That barbels is fleshy threadlike sensory structures hanging like whiskers near the mouths of certain fish, such as catfish [23].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for groundwater vulnerability (Keyword) returned 23 results for the whole karstbase:
Showing 1 to 15 of 23
Groundwater vulnerability assessment of the SW Trans-Danubian Central Range, Hungary, 1998, Dlsz:'nyi J, F_ L,

Mapping groundwater vulnerability: the Irish perspective, 1998, Daly D, Warren Wp,
The groundwater protection scheme used in the Republic of Ireland since the 1980s had not encompassed the vulnerability mapping concept. Yet internationally, vulnerability maps were becoming an essential part of groundwater protection schemes and a valuable tool in environmental management. Consequently, following a review of protection schemes world-wide, the scheme used in Ireland was updated and amended to include vulnerability maps as a crucial component of the scheme. The approach taken to vulnerability assessments and mapping in the Republic of Ireland has been dictated by the following fundamental questions: Vulnerability of what? Vulnerability to what? Which factors determine the degree of vulnerability? What is the appropriate scale for map production? How can limitations and uncertainties be taken into account? How can vulnerability assessments be integrated into environmental and resource management? The following decisions were made: (i) we should map the vulnerability of groundwater, not aquifers or wells/springs; (ii) the position in the groundwater system specified to be of interest is the water-table (i.e. first groundwater encountered) in either sand/gravel aquifers or in bedrock; (iii) we should map the vulnerability of groundwater to contaminants generated by human activities (natural impacts are a separate issue); (iv) as the main threat to groundwater in Ireland is posed by point sources, we should map the vulnerability of groundwater to contaminants released at 1-2 m below the ground surface; (v) the characteristics of individual contaminants should not be taken into account; (vi) the natural geological and hydrogeological factors that determine vulnerability are the sub-soils above the watertable, the recharge type (whether point or diffuse) and, in sand/gravels, the thickness of the unsaturated zone; (vii) based on these factors, four vulnerability categories are used (extreme, high, moderate and low); (viii) map scales of 1:50 000 and 1:10 000 are preferred; (ix) limitations and uncertainties are indicated by appropriate wording on the maps and a disclaimer; (x) vulnerability maps should be incorporated into groundwater protection schemes, which should be used in decision-making on the location and control of potentially polluting developments. Vulnerability maps have now been produced for a number of local authority areas. They are an important part of county groundwater protection schemes as they provide a measure of the likelihood of contamination, assist in ensuring that protection schemes are not unnecessarily restrictive of human economic activity, help in the choice of engineering preventative measures, and enable major developments, which have a significant potential to contaminate, to be located in areas of relatively low vulnerability and therefore of relatively low risk, from a groundwater perspective

Karstic groundwater flow characteristics in the Cretaceous Chalk aquifer, Northern Ireland, 1999, Barnes S,
The Cretaceous Chalk in Northern Ireland (Ulster White Limestone Formation) is a locally important aquifer for both public and private supply, yet little is known about its groundwater flow regime. This issue is important for the protection of existing groundwater abstractions and for the development of new sources as it will help determine groundwater vulnerability and resource potential in the Chalk. The subject has been addressed using hydrochemical variations from individual springs, together with artificial and natural water tracing techniques employed from river-sinks located at outcrop. A common orientation has been established between traced groundwater flow routes and the dominant northwest-southeast fracture trend within the Ulster White Limestone Formation. Hydraulic gradient has also been shown to have little significance in controlling the flow direction, suggesting poor fracture connectivity and thus extreme aquifer heterogeneity. Tracer breakthrough curve characteristics and velocities (up to 2838 metres per day) are indicative of conduit rather than fracture flow. In addition, the highly variable water chemistry associated with all the proven river-sink supplied springs has been independently classified to meet conduit flow criteria. Conversely, the much less variable water chemistry associated with springs draining Chalk subcrop areas (with no influence from river-sinks) is consistent with a less active karstic regime

Groundwater protection in a Celtic region: the Irish example, 2000, Misstear Bruce D. , Daly Donal,
One of the key environmental objectives of the proposed EU Water Framework Directive is that Member States must prevent the deterioration of groundwater quality. A national groundwater protection scheme for Ireland has been published recently. This scheme shows certain broad similarities to the groundwater protection policy for England and Wales, incorporating the concepts of groundwater vulnerability, source protection zones and responses to potentially polluting activities. However, the Irish scheme is different in several important respects, reflecting the different hydrogeological conditions and pollution concerns in Ireland. Some of these hydrogeological conditions and pollution concerns are common to the other Celtic regions. A major feature of the Irish scheme is the importance given to subsoil permeability in defining groundwater vulnerability. At present, the subsoil permeability is classified in qualitative terms as high, moderate or low. For the protection scheme to be defensible, it is essential to adopt a systematic and consistent approach for assigning subsoil units to these permeability categories. In mapping groundwater vulnerability, it is also useful to take account of secondary indicators such as groundwater recharge potential, natural and artificial drainage density and vegetation characteristics. Another important issue in Ireland is the protection of groundwater in karst areas, since these areas are especially vulnerable to contamination

The PI method: a GIS based approach to mapping groundwater vulnerability with special consideration of karst aquifers., 2000, Goldscheider N. , Klute M. , Sturm S. , Hotzl H.

Valutazione e cartografia automatica delta vulnerabilita degli acquiferi all'inquina-mento con il sistema parametrico SINTACS R5, 2000, Civita M. , De Maio M.


Integrated high-resolution geophysical investigations as potential tools for water resource investigations in karst terrain, 2002, Mcgrath R. J. , Styles P. , Thomas E. , Neale S. ,
Karstic aquifers can be particularly vulnerable to both pollution from surface activities and large-scale dewatering from mineral winning operations. This is because of the enhanced vertical and lateral flow paths, resulting from the dissolution of carbonate species by rainfall. Often this process results in the development of voids that can range in size from several centimetres to several tens of metres. To date, groundwater vulnerability maps for England and Wales, including karst areas, have been produced using a methodology that does not consider the presence of karst features. The uncertainties that are presented by the potential for pollution by the presence of water-carrying conduits in karst areas, where there are proposed or existing limestone quarries, require new techniques for detecting and delineating underground cave systems. In order for any mapping technique to provide an acceptable assessment of vulnerability, the location and spatial distribution of high permeability flow paths need to be established. Of the available geophysics techniques that may allow for the identification of such features, microgravity and resistivity imaging are likely to be the most successful. Microgravity surveying has the potential to identify the presence and location of such voids, and with the integration of electrical tomographic work, can provide 'targets' for the location of monitoring boreholes. Whilst these techniques are intensive and may not be cost effective on a regional scale, they do have the potential to provide high-resolution data over smaller areas, which would be invaluable to any site or area-specific assessment of vulnerability

Groundwater vulnerability map of the Chrzanow karst-fissured Triassic aquifer (Poland), 2003, Witkowski A. J. , Rubin K. , Kowalczyk A. , Rozkowski A. , Wrobel J. ,
A map shows intrinsic vulnerability to pollution of the Chrzanow karst-fissured aquifer (273 km(2)) in the southern part of Poland. This aquifer is intensively drained by numerous intakes and Zn-Pb ore mines. A DRASTIC-type parametric system was applied for groundwater vulnerability evaluation. Vulnerability assessment is based on six factors (depth to groundwater table, lithology of the unsaturated zone, net recharge, hydraulic conductivity of the aquifer, groundwater flow velocity, aquifer thickness). For the final vulnerability map construction at the scale of 1:50,000, a combination of the aquifer simulation model (using MODFLOW) and a geographical information system was applied. Maps of the net recharge, hydraulic conductivity of the aquifer and groundwater flow velocity were derived by aquifer modelling. Based on the vulnerability index (21-182), six relative vulnerability classes were selected. Reliability of the map has been verified

Assessing subsoil permeability for groundwater vulnerability, 2003, Swartz M. , Misstear B. D. R. , Daly D. , Farrell E. R. ,
Groundwater vulnerability assessment is a key element of any groundwater protection scheme. In Ireland, groundwater vulnerability is determined mainly according to the thickness and permeability of the subsoils (glacial tills and other superficial deposits). The relative permeabilities of the subsoils are assessed qualitatively as high, moderate or low. To improve the robustness of the groundwater protection scheme, research was carried out into subsoil properties with the aims of refining the permeability ratings, and of improving the way in which subsoil permeability classes are assigned. This research focused on subsoils in the low and moderate permeability categories, mainly tills. Important issues investigated were the relationship between permeability and the grain size distribution of the subsoil, description of subsoils for permeability classification, correlation between permeability and indicators of aquifer recharge, and suitable field and laboratory methods for measuring subsoil permeability. A standard system for describing subsoils was selected, namely BS5930:1999, the choice being influenced by the familiarity of this system among the main users of the vulnerability maps. Analysis of subsoil field descriptions and grain size data indicate that those samples identified as CLAY' on the basis of BS 5930 correspond to the low permeability category, and tend to have more than 13% clay size particles. The permeability values obtained from each method are compared and indicate that the numerical boundary between moderate and low permeability lies in the region of 10-9 m/s. Differences between the results from laboratory and various field permeability test methods can be explained by differences in scale and by the presence of discontinuities. The research was successful in refining the permeability ratings and thereby in making the vulnerability maps more defensible against possible challenges. This research has improved the way permeability maps are produced in Ireland, and may prove useful in other countries where permeability data are scarce and mapping relies largely on field assessment of subsoils

Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany, 2005, Goldscheider Nico,

KARST WATER MANAGEMENT IN SLOVENIA IN THE FRAME OF VULNERABILITY MAPPING, 2006, Ravbar Nataa, Kova?i? Gregor
Slovene karst sources are of great national importance for drinking water supply. Since karst aquifer systems are very susceptible to contamination, these sources require appropriate and careful managing. Unfortunately, in the acts of Slovene legislation, the special characteristics of water flow within karst regions are not very seriously taken into consideration in determining the criteria for karst water sources protection. In contrast, in some other countries, the concept of groundwater vulnerability mapping has been successfully used for protection zoning and land use planning in karst. Regarding the differences between particular karst aquifer systems, data availability and economic resources, different methods of karst water vulnerability assessment and mapping have already been developed. Already these methods have been many times tested and implemented in different test sites worldwide. However, experience in application using different methodologies for vulnerability mapping of karst aquifers is very modest in Slovenia. The present paper deals with potential methodological problems that might arise while applying the most commonly used methods for karst water vulnerability assessment to Slovene karst regions.

Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method, 2006, As J, Andreo B, Perles M, Carrasco F, Vadillo I, Jim C,

A simplified methodology for mapping groundwater vulnerability and contamination risk, and its first application in a tropical karst area, Vietnam, 2006, Vu Thi Minh Nguyet, Nico Goldscheider,

Contributory area definition for groundwater source protection and hazard mitigation in carbonate aquifers, 2007, Gunn J. ,
Carbonate aquifers provide important sources of potable water but are known to be particularly prone to pollution owing to rapid transfer of pollutants from the surface to springs or boreholes. Source protection zones and groundwater vulnerability maps are commonly used to mitigate against the pollution hazard but cannot be applied simplistically to carbonate aquifers, which are usually highly heterogeneous with overlapping groundwater divides that may vary with water levels. Divergent flow and disjunct contributory areas provide further complexity. Under these conditions, water-tracing experiments, repeated under different flow conditions, are the only tool capable of identifying those areas that contribute recharge to a particular source. Examples of water pollution affecting disjunct and overlapping source contributory areas are presented from the Waitomo area (New Zealand), Cuilcagh Mountain (Ireland) and the Peak District (UK). Source protection zones (SPZ), that have been defined by the Environment Agency in the Buxton area of the Peak District using equivalent porous medium models, are shown to be deficient. Further water-tracing experiments are essential if carbonate aquifers are to be adequately protected from pollution

Intrinsic vulnerability assessment of Sette Comuni Plateau aquifer (Veneto Region, Italy), 2007, Cucchi Franco, Franceschini Giuliana, Zini Luca, Aurighi Marina
Maps illustrating the different degrees of vulnerability within a given area are integral to environmental protection and management policies. The assessment of the intrinsic vulnerability of karst areas is difficult since the type and stage of karst development and the related underground discharge behavior are difficult to determine and quantify. Geographic Information Systems techniques are applied to the evaluation of the vulnerability of an aquifer in the alpine karst area of the Sette Comuni Plateau, in the Veneto Region of northern Italy. The water resources of the studied aquifer are of particular importance to the local communities. This aquifer must therefore be protected from both inappropriate use as well as possible pollution. The SINTACS and SINTACS PRO KARST vulnerability assessment methods have been utilized here to create the vulnerability map. SINTACS PRO KARST is an adaptation of the parametric managerial model (SINTACS) to karst hydrostructures. The vulnerability map reveals vast zones (81% of the analyzed areas) with a high degree of vulnerability. The presence of well-developed karst structures in these highly vulnerable areas facilitate water percolation, thereby enhancing the groundwater vulnerability risk. Only 1.5 of the studied aquifer have extremely high-vulnerability levels, however these areas include all of the major springs utilized for human consumption. This vulnerability map of the Sette Comuni Plateau aquifer is an indispensable tool for both the effective management of water resources and as support to environmental planning in the Sette Comuni Plateau area.

Results 1 to 15 of 23
You probably didn't submit anything to search for