Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That evaporativity is evaporative power [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for growth-rate (Keyword) returned 24 results for the whole karstbase:
Showing 1 to 15 of 24
A possible mechanism for growth of calcite speleothems without participation of biogenic carbon dioxide, 1982, Dreybrodt W,
Using Plummer et al.'s [11] rate equations on the dissolution and deposition of CaCO3 in H2O---CO2 systems, we have calculated deposition rates of CaCO3 to stalagmites in caves which are covered by glaciers or bare karst. In this case no biogenic CO2 from vegetated soil is available and the deposition of CaCO3 involves only atmospheric CO2. The mechanism of deposition proceeds by a temperature effect. Cold melting waters of about 0[deg]C dissolve CaCO3 under open system conditions at the surface of the rock. When this solution saturated with respect to CaCO3, flows through the limestone rock its temperature increases by several degrees. Therefore, it becomes supersaturated, and CaCO3 is deposited under open system conditions in the warmer cave. Maximal growth rates of about 10-3 cm/year are possible. From the kinetics of the deposition of CaCO3 from the thin water films present at the surface of stalagmites we are able to estimate the isotopic composition of carbon in the CaCO3 deposited on the stalagmites to be approximately [delta]13C = %, which is close to some observed values.From our data we conclude that substantial growth of stalagmites is possible during glacial periods as well as in areas of bare karst, a question which was not resolved up to now

CALCITE FROM THE QUATERNARY SPRING WATERS AT TYLICZ, KRYNICA, POLISH CARPATHIANS, 1993, Kostecka A. ,
At Tylicz, near Krynica Spa (Polish Carpathians), spelean deposits fill fissures and caverns in Eocene flysch rocks. They occur as: (1) clastic cave sediments transformed into hard crusts due to cementation by finely crystalline low-Mg calcite, (2) drusy calcite that covers crust surfaces and fills voids in the crust and (3) colloform calcite. Two varieties of drusy calcite are distinguished: acicular and columnar. The acicular calcite is built up of crystallites forming spherulitic fans or cones. In places it is syntaxially covered with colloform calcite. The drusy calcite is low-Mg ferroan calcite with non-ferroan subzones, whereas the colloform calcite is a low-Mg non-ferroan variety. The columnar calcite crystals form fan-like bundles. Cross-sections cut perpendicular to the c-axes of columnar crystals are equilateral triangular in shape, although some have slightly curved edges. The columnar crystals have steep rhombic terminations and most have curved triangular faces, i.e. gothic-arch calcite. Saddle crystals have also been observed. The columnar crystals are composed of radially orientated crystallites whose long dimension is parallel to the c-axis. The curved crystal faces of such polycrystals are interpreted as a result of differential growth rates of the crystallites. The spelean calcites precipitated from CO2-saturated water. The high rate of CaCO3 Precipitation is thought to be responsible for the formation of radial structures. Finely crystalline calcite formed within pore spaces of clastic sediments close to the water-air interface, drusy calcite crystallized beneath the water-air interface, and colloform calcite precipitated from thin films of water

JOINT CONTROLLED SOLUTION POCKETS (LAUGUNGSKOLKE) IN CEILINGS OF LIMESTONE CAVES - A MODEL OF THEIR GENESIS, GROWTH-RATES AND DIAMETERS, 1994, Dreybrodt W, Franke Hw,

Recent flowstone growth rates: field measurements and comparison to theoretical results, 1995, Baker A. , Smart Pl. ,
The model of calcite precipitation kinetics of D. Buhmann and W. Dreybrodt, based on the rate laws of L.N. Plummer et al., is used to predict cave flowstone growth rates. These theoretically modelled growth rates are compared to actual growth rates of recent samples found in cave and mine sites in southwest England. A good agreement is found between modelled and actual growth rates within the 95% confidence level of the determinations, although in general modelled growth rates overestimate actual growth rate by between 2.4 and 4.7 times. Several reasons for this overestimation are discussed, including uncertainties arising from the experimental data of L.N. Plummer et al., seasonal shut-off of water flow onto the flowstones and significant variations in the growth rate determining parameters during the period of flowstone growth. For one flowstone an underestimation of growth rate is observed and is explained by the presence of rimstone pools which pond water on the sample surface

Paleoclimate implications of mass spectrometric dating of a British flowstone, 1995, Baker A, Smart Pl, Edwards Rl,
The timing of growth phases in a cave flowstone from Yorkshire, England, has been precisely dated by thermal ionization mass spectrometric 238 U- 234 U- 230 Th dating. Six growth periods of both short duration and fast growth rate are separated by nondepositional hiatuses. The ages of these phases were determined to be 128.8 or -2.7, 103.1 or -1.8, 84.7 or -1.2, 57.9 or -1.5, 49.6 or -1.3, and 36.9 or -0.8 ka. There is a remarkably good correlation between the periods of active speleothem growth and the timing of solar insolation maxima, derived from orbital parameters, which has not previously been reported. Speleothem growth theory and evidence from other terrestrial paleoclimate records suggest that episodic, rapid growth phases at the insolation maxima are most likely to be caused by changes in either precipitation intensity or volume, which caused switching in the routing of water flow in the unsaturated zone above the cave. Such a result provides new evidence of the importance of variations in solar insolation for terrestrial paleoclimate and offers the potential for derivation of a paleowetness index from speleothem growth

Variations in the discharge and organic matter content of stalagmite drip waters in Lower Cave, Bristol, 1997, Baker A, Barnes Wl, Smart Pl,
Six drip waters, which were actively depositing stalagmites in Lower Cave, Bristol, were analysed both for discharge and luminescence properties. Drip discharges were determined for two different years, and show a complex response to surface precipitation variations. Inter annual variability in drip discharge is demonstrated to be significantly higher than intra-annual variability, and discharge was demonstrated both to increase and decrease non-linearly with increased precipitation. Drip waters demonstrate a correlation between their luminescence intensity and drip discharge, with increased luminescence in winter as more organic matter is flushed through the aquifer. The strength of the relationship between luminescence intensity and discharge increases with increased discharge. The results presented here have implications for the palaeoenvironmental interpretation of annual growth laminae and the growth rates of stalagmite samples.

Testing theoretically predicted stalagmite growth rate with Recent annually laminated samples: Implications for past stalagmite deposition, 1998, Baker A, Genty D, Dreybrodt W, Barnes Wl, Mockler Nj, Grapes J,

Speleothems and climate: a special issue of The Holocene, 1999, Lauritzen Stein Erik, Lundberg Joyce,
Speleothems (cave dripstones) are formed as a part of the meteoric water cycle and therefore vari ations in their growth rate and composition reflect environmental changes on the land surface above the cave. Since they are continental deposits, and possess a remarkably accurate dating potential, using TIMS U-series techniques, speleothems are important palaeoclimatic archives for the terrestrial environment, complementing the marine and ice-core records. The climatic proxies that can be deciphered from speleothems are growth rate, stable isotope composition (d18O, d13C), organic (humic) matter and trace element composition, as well as luminescent laminae, which may display annual rhythms. The nine papers in this special issue ofThe Holocene present the latest results in palaeoclimatic analysis from speleothems

Intra- and inter-annual growth rate of modern stalagmites, 2001, Genty D, Baker A, Vokal B,
We measure the factors that determine growth rate (temperature, drip rate, calcium ion concentration) for 31 waters that feed stalagmites within six cave systems throughout Europe. Water samples were collected at a frequency of at least month. to permit the modelling of both inter- and intra-annual growth rate variations, utilising the theory of Wolfgang Dreybrodt (Chem. Geol. 29 (1980) 89-105; Chem. Geol, 32 (1981) 237-245; Dreybrodt, W., 1988, Processes in Karst Systems. Springer-Verlag, Berlin 288 pp.). Inter-annual growth rates were measured using the stalagmites that were associated with the analysed water samples; growth rate was determined from annual lamina counting, specific time markers within the stalagmites, and location of bomb C-14. When compared to theoretically predicted values, a good agreement between theoretical and measured stalagmite growth rates is observed (R-2 = 0.69). When compared to site climate and geochemical parameters, a good correlation is observed between measured growth fate and mean annual temperature for five sites (R-2 = 0.63) and dripwater calcium content (R-2 = 0.61), but not drip rate (R-2 = 0.09). The good correlation with both calcium and temperature is due to soil CO, production being primarily determined by surface temperature and soil moisture. However, when we compare our data to that in the Grotte de Clamouse, a site that has little soil cover, we observe that the growth rate-temperature relationship breaks down due to either the lack of soil CO, production or prior calcite: precipitation. Intra-annual data demonstrates that maximum growth rate occurs when calcium concentrations are high, and that this occurs under different seasons depending on the hydrology of each site. Our results demonstrate a stronger dependence of intra-annual stalagmite growth rate on dissolved calcium ion concentrations than drip rate for the range of drip rates investigated here (0.01 < t < 2drip s(-1)), but for lower drip rates, this factor becomes important in controlling growth rate. We suggest that for well-monitored acid -understood sites, stalagmite growth rate variations can provide useful information for palaeoclimate reconstruction. (C) 2001 Elsevier Science B.V. All rights reserved

Partitioning of Sr2 and Mg2 into calcite under karst-analogue experimental conditions, 2001, Huang Yiming, Fairchild Ian J. ,
There is a paucity of experimental data on calcite precipitation from waters at low ionic strength and low ratios of Mg/Ca and Sr/Ca, using controlled and constant precipitation rates. Such data are particularly needed for studies of speleothem geochemistry in relation to palaeoclimates.We carried out a series of experiments using a karst-analogue set-up in a chamber of constant temperature and 100% humidity. A steady flow of NaHCO3 and CaCl2 solutions at PCO2 around 10-3.2 were mixed just before passage through a tube (analogous to a soda-straw stalactite) and allowed to drip onto a surface, analogous to a stalagmite. Growth rates were comparable with linear extension rates of natural speleothems.Analytical spots gave reproducible analyses in later analytical cycles after ablation of surface calcite with Na and Mg contamination. Different crystals from the same experiment tended to show positive covariation of Na and Mg with negative covariation with Sr. This may be due to the presence of growth hillocks with vicinal faces with differential partitioning behaviour.The result for the partition coefficient for Mg (DMg) at 25[deg]C is 0.031 0.004, which is quantitatively in good agreement with the trends of previous workers. At 15[deg]C, the result is 0.019 0.003. The temperature dependency is higher than experimental data on seawater-analogue solutions, but lower than a previous estimate based on a comparison of speleothem chemistry with single water analyses.Data for DSr are mainly in the range of 0.057 to 0.078, with a possible weak dependency on growth rate, consistent with previous experimental work. Absolute values are higher than studies in Mg-free saline solutions, which is attributed mainly to salinity effects. Values of DSr are nevertheless somewhat lower than in natural caves, which may relate to crystal growth factors.Mg partition coefficient values should allow robust determination of solution Mg/Ca compositions in enclosed caves, which are at constant temperature on the decadal timescale. The inferred sensitivity of DSr to growth rate factors implies that Sr values should be interpreted more cautiously. Muted changes could relate entirely to growth rate variations, whereas changes of large magnitude imply a control by solution composition. The absence of local (tens of micron scale) antipathetic variations in Sr and Mg in studied natural speleothems, implies that intracrystalline zoning phenomena, if present, are on a finer scale in those natural materials compared with experimental products

Geochronology of late Pleistocene to Holocene speleothemsfrom central Texas: Implications for regional paleoclimate, 2001, Musgrove Marylynn, Banner Jay L. , Mack Larry E. , Combs Deanna M. , James Eric W. , Cheng Hai, Edwards R. Lawrence,
A detailed chronology for four stalagmites from three central Texas caves separated by as much as 130 km provides a 71 000-yr record of temporal changes in hydrology and climate. Mass spectrometric 238U-230Th and 235U-231Pa analyses have yielded 53 ages. The accuracy of the ages and the closed- system behavior of the speleothems are indicated by interlaboratory comparisons, concordance of 230Th and 231Pa ages, and the result that all ages are in correct stratigraphic order. Over the past 71 000 yr, the stalagmites have similar growth histories with alternating periods of relatively rapid and slow growth. The growth rates vary over more than two orders of magnitude, and there were three periods of rapid growth: 71-60 ka, 39-33 ka, and 24-12 ka. These growth-rate shifts correspond in part with global glacial-interglacial climatic shifts. Paleontological evidence indicates that around the Last Glacial Maximum (20 ka), climate in central Texas was cooler and wetter than at present. This wetter interval corresponds with the most recent period of increased growth rates in the speleothems, which is consistent with conditions necessary for speleothem growth. The temporal shift in wetness has been proposed to result from a southward deflection of the jet steam due to the presence of a continental ice sheet in central North America. This mechanism also may have governed the two earlier intervals of fast growth in the speleothems (and inferred wetter climate). Ice volumes were lower and temperatures in central North America were higher during these two earlier glacial intervals than during the Last Glacial Maximum, however. The potential effects of temporal variations in precession of Earth's orbit on regional effective moisture may provide an additional mechanism for increased effective moisture coincident with the observed intervals of increased speleothem growth. The stalagmites all exhibit a large drop in growth rate between 15 and 12 ka, and they show very slow growth up to the present, consistent with drier climate during the Holocene. These results illustrate that speleothem growth rates can reflect the regional response of a hydrologic system to regional and global climate variability

Annual to sub-annual resolution of multiple trace-element trends in speleothems, 2001, Fairchild Ij, Baker Andy, Borsato Andr, Frisia Silv, Hinton Rw, Mcdermott Fran, Tooth Af,
This study aims to establish evidence for the widespread existence of preserved high-resolution trace element variations in speleothems that may have climatic significance. Ion microprobe analysis of speleothems reveals that annual to sub-annual variations in element chemistry exist at five, shallow western European cave sites (Crag Cave, County Kerry and Ballynamintra, County Waterford, Ireland; Uamh an Tartair, Sutherland, Scotland; Grotte Pere-Noel, Belgium; Grotta di Ernesto, NE Italy) with widely varying climatic, geomorphic and geological settings. The variations are not restricted to species (Mg, Sr and Ba) known to substitute directly for Ca in the calcite lattice, but include H, F, Na and P. Phosphorus (as phosphate) displays the greatest variability and may have the most significance as a proxy for the seasonal temperature cycle because of its role as a nutrient element. The technique allows estimation of growth rate of speleothems at any interval of interest, which is one of several possible uses in palaeoclimatology

Stable isotope stratigraphy of Holocene speleothems: examples from a cave system in Rana, northern Norway, 2001, Linge H. , Lauritzen S. E. , Lundberg J. , Berstad I. M. ,
High-precision TIMS U-series dates and continuous stable oxygen and carbon isotope profiles of a 4000 year stalagmite record from Rana, northern Norway, are presented and compared with data from two other speleothems from the same cave. The dating results yield ages from 387534 to 2963 years before AD2000, with 2[sigma] errors from 0.5 to 1%. The overall growth rate is 35 mm/ka, corresponding to a temporal resolution of 29 years/mm. The stalagmite is tested for isotopic equilibrium conditions, where all `Hendy' tests, except one, indicate isotopic equilibrium or quasi equilibrium deposition. Both the stable oxygen and carbon isotope records reveal a strong and abrupt enrichment in the near-top measurements. This corresponds in time to the opening of a second cave entrance in the late 1960s, which caused changes in the cave air circulation. The stable oxygen isotope signal is enriched compared to the modern value over the last 300 years, indicating a negative response to temperature changes. Likewise, the stable carbon isotope record is enriched in this period. However, both of the stable isotope records are shown to be significantly enriched compared to the isotope ranges displayed by other stalagmites in the same cave, and this questions the reliability of the proxy records derived from the presented stalagmite. Still, a general good correspondence of large scale fluctuations is found between the three stable oxygen isotope records from this cave. The stable carbon isotope records show large variations within the cave and are believed to be governed by soil-zone conditions, percolation pathways and possibly driprates

Key Largo Limestone revisited: Pleistocene shelf-edge facies, Florida Keys, USA, 2002, Multer H. G. , Gischler E. , Lundberg J. , Simmons K. R. , Shinn E. A. ,
New dates and analysis of 12 deep and 57 shallow cores allow a more detailed interpretation of the Pleistocene shelf edge of the Florida Platform as found in various facies of the Key Largo Limestone beneath the Florida Keys. In this study a three-phase evolution of the Quaternary units (Q1-Q5) of the Key Largo is presented with new subdivision of the Q5. (1) In the first phase, the Q1 and Q2 (perhaps deposited during oxygen-isotope stage 11) deep-water quartz-rich environment evolved into a shallow carbonate phase. (2) Subsequently, a Q3 (presumably corresponding to oxygen-isotope stage 9) flourishing reef and productive high-platform sediment phase developed. (3) Finally, a Q4 and Q5 (corresponding to oxygen-isotope stages 7 and 5) stabilization phase occurred with reefs and leeward productive lagoons, followed by lower sea levels presenting a sequence of younger (isotope substages 5c, 5a) shelf-margin wedges, sediment veneers and outlier reefs. The Key Largo Limestone provides an accessible model of a carbonate shelf edge with fluctuating water depth, bordering a deep seaward basin for a period of at least 300 ka. During this time, at least four onlaps/offlaps, often separated by periods of karst development with associated diagenetic alterations, took place. The story presented by this limestone not only allows a better understanding of the history of south Florida but also aids in the interpretation of similar persistent shelf-edge sites bordering deep basins in other areas

Concurrent tectonism and aquifer evolution > 100,000 years recorded in cave sediments, Dinaric karst, Slovenia, 2003, Sasowsky I. D. , Sebela S. , Harbert W. ,
A natural conduit that had formed along a fault was exposed in Upper Cretaceous limestones during construction of a tunnel near Postojna,. Slovenia. The conduit is filled with poorly indurated clastic sediments. Slickensides found on the margin of the sediment deposit show sinistral fault motion that is consistent with regional tectonism. Analysis of the sediments revealed reversed magnetic polarity. The minimum age for latest movement on the fault, origin of the cave, and deposition of these sediments is 780 ka. Present-day tectonic stresses are concordant with the fault movement, and it is likely that the fault has been continuously active throughout growth, infilling, and hydrologic abandonment of the conduit. Based upon known and modeled growth rates for conduits, this system is recording a period of growth and abandonment that exceeds 100,000 years. The role that rock discontinuities play in groundwater flow may vary over these timescales, and it may be important to account for tectonism when evaluating the long-term evolution of aquifers

Results 1 to 15 of 24
You probably didn't submit anything to search for