Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That unsaturated flow is 1. the movement of water in a porous medium in which the pore spaces are not filled to capacity with water [22]. 2. two phase flow through pores only partially filled with water and air [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for hydrosphere (Keyword) returned 3 results for the whole karstbase:
Sedimentary manganese metallogenesis in response to the evolution of the Earth system, 2006, Roy Supriya,
The concentration of manganese in solution and its precipitation in inorganic systems are primarily redox-controlled, guided by several Earth processes most of which were tectonically induced. The Early Archean atmosphere-hydrosphere system was extremely O2-deficient. Thus, the very high mantle heat flux producing superplumes, severe outgassing and high-temperature hydrothermal activity introduced substantial Mn2 in anoxic oceans but prevented its precipitation. During the Late Archean, centered at ca. 2.75[no-break space]Ga, the introduction of Photosystem II and decrease of the oxygen sinks led to a limited buildup of surface O2-content locally, initiating modest deposition of manganese in shallow basin-margin oxygenated niches (e.g., deposits in India and Brazil). Rapid burial of organic matter, decline of reduced gases from a progressively oxygenated mantle and a net increase in photosynthetic oxygen marked the Archean-Proterozoic transition. Concurrently, a massive drawdown of atmospheric CO2 owing to increased weathering rates on the tectonically expanded freeboard of the assembled supercontinents caused Paleoproterozoic glaciations (2.45-2.22[no-break space]Ga). The spectacular sedimentary manganese deposits (at ca. 2.4[no-break space]Ga) of Transvaal Supergroup, South Africa, were formed by oxidation of hydrothermally derived Mn2 transferred from a stratified ocean to the continental shelf by transgression. Episodes of increased burial rate of organic matter during ca. 2.4 and 2.06[no-break space]Ga are correlatable to ocean stratification and further rise of oxygen in the atmosphere. Black shale-hosted Mn carbonate deposits in the Birimian sequence (ca. 2.3-2.0[no-break space]Ga), West Africa, its equivalents in South America and those in the Francevillian sequence (ca. 2.2-2.1[no-break space]Ga), Gabon are correlatable to this period. Tectonically forced doming-up, attenuation and substantial increase in freeboard areas prompted increased silicate weathering and atmospheric CO2 drawdown causing glaciation on the Neoproterozoic Rodinia supercontinent. Tectonic rifting and mantle outgassing led to deglaciation. Dissolved Mn2 and Fe2 concentrated earlier in highly saline stagnant seawater below the ice cover were exported to shallow shelves by transgression during deglaciation. During the Sturtian glacial-interglacial event (ca. 750-700[no-break space]Ma), interstratified Mn oxide and BIF deposits of Damara sequence, Namibia, was formed. The Varangian ([identical to] Marinoan; ca. 600[no-break space]Ma) cryogenic event produced Mn oxide and BIF deposits at Urucum, Jacadigo Group, Brazil. The Datangpo interglacial sequence, South China (Liantuo-Nantuo [identical to] Varangian event) contains black shale-hosted Mn carbonate deposits. The Early Paleozoic witnessed several glacioeustatic sea level changes producing small Mn carbonate deposits of Tiantaishan (Early Cambrian) and Taojiang (Mid-Ordovician) in black shale sequences, China, and the major Mn oxide-carbonate deposits of Karadzhal-type, Central Kazakhstan (Late Devonian). The Mesozoic period of intense plate movements and volcanism produced greenhouse climate and stratified oceans. During the Early Jurassic OAE, organic-rich sediments host many Mn carbonate deposits in Europe (e.g., Urkut, Hungary) in black shale sequences. The Late Jurassic giant Mn Carbonate deposit at Molango, Mexico, was also genetically related to sea level change. Mn carbonates were always derived from Mn oxyhydroxides during early diagenesis. Large Mn oxide deposits of Cretaceous age at Groote Eylandt, Australia and Imini-Tasdremt, Morocco, were also formed during transgression-regression in greenhouse climate. The Early Oligocene giant Mn oxide-carbonate deposit of Chiatura (Georgia) and Nikopol (Ukraine) were developed in a similar situation. Thereafter, manganese sedimentation was entirely shifted to the deep seafloor and since ca. 15[no-break space]Ma B.P. was climatically controlled (glaciation-deglaciation) assisted by oxygenated polar bottom currents (AABW, NADW). The changes in climate and the sea level were mainly tectonically forced

Karst in Earth's Crust: distribution and the main types, 2009, Andreychouk V. , Dublyansky Y. , Yezhov Y. , And Lysenin G.

Some problems of theoretical karstology are considered. An attempt is made to match the fundamentals of karstology and recent ideas on the structure of lithosphere and the vertical zoning of hydrosphere. Boundary conditions of karstogenesis and karst zoning are discussed. The boundaries and the structure of karstosphere, as well as the place of karst among other geological processes are defined.

The book is of interest for karstologists, hydrogeologists, geologists and geographers.


Carbon cycle in the epikarst systems and its ecological effects in South China, 2012, Jiang Z. , Lian Y. , Qin X.

The carbon cycle in a global sense is the biogeochemical process by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the earth. For epikarst systems, it is the exchange of carbon among the atmosphere, water, and carbonate rocks. Southern China is located in the subtropical zone; its warm and humid weather creates favorable conditions for the dynamic physical, chemical, and ecological processes of the carbon cycle. This paper presents the mechanisms and characteristics of the carbon cycle in the epikarst systems in south China. The CO2 concentration in soils has clear seasonal variations, and its peak correlates well with the warm and rainy months. Stable carbon isotope analysis shows that a majority of the carbon in this cycle is from soils. The flow rate and flow velocity in an epikarst system and the composition of carbonate rocks control the carbon fluxes. It was estimated that the karst areas in south China contribute to about half of the total carbon sink by the carbonate system in China. By enhancing the movement of elements and dissolution of more chemical components, the active carbon cycle in the epikarst system helps to expand plant species. It also creates favorable environments for the calciphilic plants and biomass accumulation in the region. The findings from this study should help in better understanding of the carbon cycle in karst systems in south China, an essential component for the best management practices in combating rock desertification and in the ongoing study of the total carbon sink by the karst flow systems in China


Results 1 to 3 of 3
You probably didn't submit anything to search for