Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That interstitial medium is spaces between grains of sand or fine gravel filled with water which contains phreatobia [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for inhibition (Keyword) returned 7 results for the whole karstbase:
Secondary Origin of the Radial Fabric in Stalactitic Carbonate., 1983, Broughton Paul L.
The growth surfaces of most stalactites are interpreted as numerous syntaxial overgrowth crystallites. These coalesce immediately behind the growth surface, often trapping portions of the water film as fluid-filled cavities. The fluid inclusions represent former inter-crystallite spaces and characterize the widely misinterpreted "growth ring". Complete crystallite coalescence generates inclusions-free calcite, whereas inhibition of lateral coalescence of the overgrowth crystallites generates layers of acicular calcite. It is generally only during periods of cave flooding that the crystallites merge and overgrow each other and precipitation eventually occurs upon large, planar crystal faces. Stalactitic carbonate growth is secondary, from a multi-crystalline precursor that is, in a sense, a largo skeletal crystal. The precursor crystallites are in lattice continuity with the substrate and with adjacent crystallites. Crystal boundaries arise from lateral lattice mismatch on the curved growth surface. It is not competitive growth as the secondary columnar crystals do not interfere with each other.

The kinetics of the reaction CO2?>H? as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3, 1996, Dreybrodt W, Lauckner J, Liu Zh, Svensson U, Buhmann D,
Dissolution of CaCO3 in the system H2O-CO2-CaCO3 is controlled by three rate-determining processes: The kinetics of dissolution at the mineral surface, mass transport by diffusion, and the slow kinetics of the reaction H2O CO2 = H HCO3-. A theoretical model of Buhmann and Dreybrodt (1985a,b) predicts that the dissolution rates depend critically on the ratio V/A of the volume V of the solution and the surface area A of the reacting mineral. Experimental data verifying these predictions for stagnant solutions have been already obtained in the range 0.01 cm < V/A < 0.1 cm. We have performed measurements of dissolution rates in a porous medium of sized CaCO3 particles for V/A in the range of 2 . 10(-4) cm and 0.01 cm in a system closed with respect to CO2 using solutions pre-equilibrated with an initial partial pressure of CO2 of 1 . 10(-2) and 5 . 10(-2) atm. The results are in satisfactory agreement with the theoretical predictions and show that especially for V/A < 10(-3) cm dissolution is controlled entirely by conversion of CO2 into H and HCO3-, whereas in the range from 10(-3) cm up to 10(-1) cm both CO2-conversion and molecular diffusion are the rate controlling processes. This is corroborated by performing dissolution experiments using 0.6 mu molar solutions of carbonic anhydrase, an enzyme enhancing the CO2-conversion rates by several orders of magnitude. In these experiments CO2 conversion is no longer rate limiting and consequently the dissolution rates of CaCO3 increase significantly. We have also performed batch experiments at various initial pressures of CO2 by stirring sized calcite particles in a solution with V/A = 0.6 cm and V/A = 0.038 cm. These data also clearly show the influence of CO2-conversion on the dissolution rates. In all experiments inhibition of dissolution occurs close to equilibrium. Therefore, the theoretical predictions are valid for concentrations c less than or equal to 0.9 c(eq). Summarising we find good agreement between experimental and theoretically predicted dissolution rates. Therefore, the theoretical model can be used with confidence to find reliable dissolution rates from the chemical composition of a solution for a wide field of geological applications

Precipitation kinetics of calcite in the system CaCO3-H2O-CO2: The conversion to CO2 by the slow process H?->CO2? as a rate limiting step, 1997, Dreybrodt W, Eisenlohr L, Madry B, Ringer S,
Precipitation rates of CaCO3 from supersaturated solutions in the H2O - CO2 - CaCO3 system are controlled by three rate-determining processes: the kinetics of precipitation at the mineral surface, mass transport of the reaction species involved to and from the mineral surface, and the slow kinetics of the overall reaction HCO3- H --> CO2 H2O. A theoretical model by Buhmann and Dreybrodt (1985a,b) taking these processes into account predicts that, due to the slow kinetics of this reaction, precipitation rates to the surface of CaCO3 minerals depend critically on the ratio V/A of the volume V of the solution to the surface area A of the mineral in contact with it, for both laminar and turbulent flow. We have performed measurements of precipitation rates in a porous medium of sized particles of marble, limestone, and synthetic calcite, with V/A ratios ranging from 3.10(-4) to 1.2-10(-2) cm at 10 degrees C. Calcite was precipitated from supersaturated solutions with [Ca2] approximate to 4 mmol/L and an initial P-CO2 of 5.10(-3) or 1.10(-3) atm, respectively, using experimental conditions which prevented exchange of CO2 with the atmosphere, i.e., closed system. The results are in qualitative agreement with the theoretical predictions. Agreement with the observed data, however, is obtained by modifying the rate law of Plummer et al. (1978) to take into account surface-controlled inhibition effects. Experiments with supersaturated solutions containing carbonic anhydrase, an enzyme which enhances the conversion of HCO3- into CO2, yield rates increased by a factor of up to 15. This provides for the first time unambiguous experimental evidence that this reaction is rate limiting. We have also measured precipitation rates in batch experiments, stirring sized mineral particles in a solution with V/A ranging from 0.03 to 0.75 cm. These experiments also give clear evidence on the importance of the conversion of HCO3- into CO2 as rate limiting step. Taken together our experiments provide evidence that the theoretical model of Buhmann and Dreybrodt (1985a,b) can be used to predict reliable rates from the composition of CaHCO3- solutions with low ionic strength in many geologically relevant situations. Copyright (C) 1997 Elsevier Science Ltd

Kinetics and mechanisms of precipitation of calcite as affected by P-CO2 and organic ligands at 25 degrees C, 1998, Lebron I. , Suarez D. L. ,
This study was conducted to develop a model for the precipitation rate of calcite under varying CO2 partial pressures and concentrations of dissolved organic carbon (DOG). Precipitation rates of calcite were measured in solutions with supersaturation values (Omega) between 1 and 20 and in the presence of 2 m(2)L(-1) of calcite. Experiments were run at partial pressures of CO2 (P-CO2) in the range of 0.035-10 kPa and DOC concentrations in the range of 0.02-3.50 mM. The effects of these two variables were quantified separately for the precipitation mechanisms of crystal growth and heterogeneous nucleation. We found an increase in precipitation rate (at constant Omega) when P-CO2 increased. For constant Omega, we also found a linear relationship between calcite precipitation rate and activity of CaHCO3, indicating that CaHCO3 species have an active role in the mechanism of calcite precipitation. These findings suggest that the increase in the precipitation rate with higher P-CO2 levels is likely caused by the increase in the negative charge on the calcite surface together with an increase in the activity of CaHCO3 species in solution. The mechanism of inhibition of calcite crystal growth by organic ligands has been shown to be surface coating of the crystals by DOG. The amount of DOC adsorbed on the surface of the calcite crystals follows a Langmuir isotherm for all the P-CO2 levels studied; however, the amount of DOC necessary to inhibit calcite precipitation increased. With increasing P-CO2, the negative charge on the crystal increases, which affects crystal growth, but also these increases in P-CO2 cause a decrease in the solution pH and increase in the ionic strength for constant Omega. Solution pH and ionic strength affect the structure and degree of dissociation of the organic functional groups, which in turn affects the and DOC concentration on the inhibition of crystal growth and heterogeneous nucleation. The effect of P-CO2 and DOC concentration on the precipitation rate of calcite is expressed in a precipitation rate model which reflects the contributions of crystal growth and heterogeneous nucleation. Copyright (C) 1998 Elsevier Science Ltd

Spatialized morphological analysis: A method of detecting faults, a necessity for hydrodynamic and karstologic studies of cracked aquifers. Examples of the chalky aquifers of Northern France, 1999, Bonnet T, Colbeaux Jp,
Spatialized Morphological Analysis is a new method of detecting faults which uses the morphometric relief data (slope, aspect, elevation) taken from a precise Digital Elevation Model by a computer program. This program, taking the principles of the evolution of relief into account (rock type, climate, chronology), allows the statistical identification of morphometric standards for each type of morphology and the extraction of anomalies to these standards. Some of these anomalies, after a processing of spatial classification, are considered as tectonic tracks. The actual existence of faults, corresponding with anomalies, is verified by classical methods of structural geology. By a better localisation and geometrical definition of faults, this method can allow the optimization of hydrodynamical studies of cracked aquifers, and in case of calcareous ones, a spatial approach to karstification. This method is applied to the north of France chalky aquifer, where, associated with detailed hydrogeological records, it allowed the identification of rapid transfers of groundwater at the level of faults. Even so, exokarstic phenomena are uncommon in this area. Some chemical and textural particularities of Quaternary chalk cover may be the cause of rainwater inhibition, and it is possible that the karstic responses observed are due to considerable mechanical dissolution in the saturated area where tectonic activity (neotectonic faults have been observed) creates environments of preferential flow. (C) Elsevier, Paris

Limestone dissolution rates in karst environments, 2000, Dreybrodt W. , Eisenlohr L.
The removal of limestone from the bedrock at the surface and below ground by CO2-containing aqueous solutions sculptures karst landscapes and complex karst aquifers. To understand the evolution of such karstic features requires the knowledge of dissolution rates under various hydrogeological conditions. These rates are controlled by several complex mechanisms: 1) The rate equations of Plummer et al. (1978), from which surface reaction rates can be obtained when the concentrations of reacting species at the surface are known. 2) The slow reaction of CO2 to H+ and HCO3, which provides the H+ ion for converting carbonate to bicarbonate ions. 3) Mass transport by diffusion, either in laminar or turbulent flow. 4) Inhibition of surface reaction rates by the presence of impurities in natural carbonate minerals. 5) Open- or closed-system conditions with respect to CO2, under which dissolutional removal of limestone is active. Depending on the actual conditions each of these processes can greatly effect dissolution rates. This paper addresses these problems and provides data, which can be used to obtain realistic dissolution rates, when solutions flow laminarly in narrow fractures, but also for turbulent flow in large conduits, and a variety of other different hydrogeological conditions. These data are also necessary as input for modeling the evolution of karst.

C and O stable isotope variability in recent freshwater carbonates (River Krka, Croatia), 2004, Lojen S. , Dolenec T. , Vokal B. , Cukrov N. , Mihelcic G. , Papesch W. ,
Three types of recent carbonate precipitates from the River Krka, Croatia, were analysed: (1) bulk tufa from four main cascades in a 34 km long section of the river flow through the Krka National Park; (2) a laminar stromatolite-like incrustation formed in the tunnel of a hydroelectric power plant close to the lowest cascade; and (3) recent precipitates collected on artificial substrates during winter, spring and summer periods. Stable isotope compositions of carbon (delta(13)C) and oxygen (delta(18)O) in the carbonate and organic carbon (delta(13)C(org)) were determined and compared with delta(18)O of water and delta(13)C of dissolved inorganic carbon (DIC). The source of DIC, which provides C for tufa precipitation, was determined from the slope of the line ([DIC]/[DIC0]-1) vs. (delta(13)C-DIC x ([DIC]/[DIC0])) (Sayles & Curry, 1988). The delta(13)C value of added DIC was -13.6parts per thousand, corresponding to the dissolution of CO2 with delta(13)C between -19.5 and -23.0parts per thousand Vienna Pee Dee Belemnite (VPDB). The observed difference between the measured and calculated equilibrium temperature of precipitation of bulk tufa barriers indicates that the higher the water temperature, the larger the error in the estimated temperature of precipitation. This implies that the climatic signals may be valid only in tufas precipitated at lower and relatively stable temperatures. The laminar crust comprising a continuous record of the last 40 years of precipitation shows a consistent trend of increasing delta(13)C and decreasing delta(18)O. The lack of covariation between delta(13)C and delta(18)O indicates that precipitation of calcite was not kinetically controlled for either of the elements. delta(13)C and delta(18)O of precipitates collected on different artificial substrates show that surface characteristics both of substrates and colonizing biota play an important role in C and O isotope fractionation during carbonate precipitation

Results 1 to 7 of 7
You probably didn't submit anything to search for