Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That subsoil karst is karst covered by soil, usually residual soil [17]. synonyms: (british.) soddy karst; (french.) karst vert, karst subcutane; (german.) bedeckter karst, bodenbedeckter karst, grukarst, subkutan karst; (greek.) ypethaphikon karst; (russian.) zadernovanny karst; (spanish.) karst subcutaneo; (turkish.) toprakalti karsti; (yugoslavian.) pokriveni krs (kras). see also covered karst.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for intrastratal karst (Keyword) returned 13 results for the whole karstbase:
Breakdown development in cover beds, and landscape features induced by intrastratal gypsum karst., 1996, Andrejchuk Vjacheslav, Klimchouk Alexander
Intrastratal karst is by far the predominant gypsum karst type. Its development may begin in deep-seated settings within rocks already buried by younger strata, and it proceeds increasingly rapidly as uplift brings gypsum sequences into progressively shallower positions. Such development commonly occurs under confined (artesian) hydrogeological conditions, that subsequently change to open conditions (phreatic-water table-vadose). The general evolutionary line of intrastratal karst is typified by progressive emergence of a sequence into a shallower position, activation of groundwater circulation and development of cave systems within karst units, commencement of gravitational breakdown and its upward propagation through overlying beds, and development of a karst landscape. These processes and phenomena progress through the directed evolution of karst types as follows: deep-seated intrastratal karst (1K) to subjacent 1K to entrenched 1K to denuded karst. One of the main characteristics of intrastratal karst is that it induces gravitational breakdown in cover beds. With the aid of processes other then simple breakdown, such effects may propagate upwards and may, or may not, reach the surface, depending upon the thickness and structure of the overburden. A karst landscape evolves when such features reach the surface. This paper considers the conditions and mechanisms of such development.

Some examples of Gypsum karsts and the more important gypsum caves in Spain., 1996, Calaforra Jos Maria, Pulidobosch Antonio
Spain possesses some of the most important examples of gypsum karst in Europe, in terms of the extent and variety of the gypsiferous outcrops. These are divided into gypsum belonging to the Triassic, Palaeogene and Neogene epochs, each of which displays different lithological and structural aspects. Some of Spain's most significant gypsum karsts, from the speleological standpoint, are described, and these share a common characteristic of all supporting the development of large caves. Reference is made to the geomorphology, hydrogeology and hydrochemistry of the gypsum karsts of Sorbas, Vallada and Gobantes-Meliones, which provide significant examples of intrastratal karst, speleogenesis by saline groundwater mixing and the influence of carbonate strata, respectively. Finally, brief geomorphological and speleogenetic descriptions of the more significant gypsum caves in Spain are given, together with a list of the longest and deepest gypsum caves in Spain.

Speleogenesis in Gypsum., 1996, Klimchouk Alexander
Satisfactory explanation of the origin and development of caves (speleogenesis) is a core problem of karst studies. Karst evolves as a circulation system, organised and interconnected through a conduit structure. Such a system may include superficial inputs and outputs, expressed as or related to karst landforms. However, there may be no such components if the system is represented entirely by conduits as in the case with deep-seated intrastratal karst. The main differences between speleogenesis in gypsum and in carbonate rocks lie in the chemistry and kinetics of their dissolution, in some of the lithological or structural peculiarities of the respective rocks and formations, and in their hydrogeological characteristics. The present chapter considers how these factors influence cave origin and development.

Gypsum karst in the Western Ukraine., 1996, Klimchouk Alexander
The great gypsum karst of the Western Ukraine, which is associated with Miocene (Badenian) gypsum, provides the worlds foremost examples of intrastratal gypsum karst and speleogenesis under artesian conditions. Differential neotectonic movements have resulted in various parts of the territory displaying different types (stages) of intrastratal karst, from deep-seated, through subjacent, to entrenched. Internal gypsum karstification proceeded mainly under confined hydrogeological conditions. While such development still continues in part of the territory, other parts exhibit entrenched karst settings. Huge relict maze cave systems have been explored here, five of which are currently the longest known gypsum caves in the world. They account for well over half of the total length of gypsum cave that has been explored. This unique concentration of large caves reflects the local coincidence of specific structural prerequisites of speleogenesis (character and extent of fissuring), favourable regional evolution (rapid uplift, and fossilization of maze systems), the presence of overlying limestone aquifers, and a widespread clayey protective cover (which prevented the total infilling and/or destruction of the caves). Surface karst evolved as a consequence of the internal karstification in the gypsum, and the karst landform assemblages differ between the territories that present different types of karst.

Types of karst and evolution of hydrogeologic settings, 2000, Klimchouk A. , Ford D.
Karst is treated as a specific kind of fluid circulation system capable to self-development and self-organization. Active karst may evolve at wide range of geological environments, from deep-seated (without any apparent relation to the surface) to sub-surface, and be represented by confined and unconfined circulation systems. Extrinsic factors and intrinsic mechanisms of karst development change regularly and considerably within the general cycle of geological evolution of a soluble rocks or, more specifically, within hydrogeologic cycle. The latter encompasses a period of exposure between major transgressions and is characterized by progressively expanding meteoric groundwater circulation. A broad evolutionary approach is therefore needed to differentiate between karst types, which concurrently represent distinct stages of karst development. This is also a mean to adequately classify speleogenetic settings. Evolutionary typology of karst considers the whole cycle of a formation's life, from deposition (syngenetic karst) through deep burial to exposure and denudation. The group of intrastratal karst types includes deep-seated, subjacent, entrenched and denuded karst, the latter also fall into the group of exposed karst types. Exposed karst includes also open karst which represents the pure line of exposed development, that is karst evolved solely when the soluble rock has been exposed to the surface. Exposed karst development can be interrupted by a subsequent burial (buried karst), with paleokarst formed in result, and rejuvenated by exhumation. The types of karst are marked by characteristic associations of structural prerequisites for groundwater flow and speleogenesis, flow regime, recharge mode and recharge/discharge configurations, groundwater chemistry and a degree of inheritance. Consequently, these associations generate particular types of caves.

Mechanisms of karst breakdown formation in the gypsum karst of the fore-Ural region, Russia (from observations in the Kungurskaja cave), 2002, Andrejchuk Vjacheslav, Klimchouk Alexander
The fore-Ural is a classical region of intrastratal gypsum karst. The intensive development of karst in the Permian gypsums and anhydrites causes numerous practical problems, the subsidence hazard being the most severe. Mechanisms of karst breakdown formation were studied in detail in the Kunguskaya Cave area. The cave and its setting are characteristic to the region and, being a site of detalied stationary studies for many years, the cave represents a convenient location for various karst and speleological investigations. Breakdown structures related to cavities of the Kungurskaya Cave type develop by two mechanisms: gravitational (sagging and fall-in of the ceilings of cavities) and filtrational/gravitational (crumbling and fall-in of the ceilings of vertical solution pipes, facilitated by percolation). The former implies upward stoping of the breakout roof and cessation of the process at some height above the floor of the cave due to complete infilling by fallen clasts. This mechanism cannot generate surface deformation where the overburden thickness exceeds a certain value. The latter mechanism implies that breakdown will almost inevitably express itself at the surface, most commonly as a sudden collapse, even where the thickness of the overburden is large. These mechanisms resuit in different appearance, distribution and further evolution of the respective surface forms, so that subsidence hazard assessment should be performed differently for these types of breakdown. The conclusions reached by this study are representative for the region, although some of them bear more general validity for intrastratal karst conditions. This study underlines the ultimate importance of speleological investigations to the understanding of karst breakdown mechanisms.

Subsidence hazards in different types of karst: evolutionary and speleogenetic approach, 2002, Klimchouk Alexander
The typology of karst, based on distinguishing the successive stages of general hydrogeologicali evolution, between which major boundary conditions and the overall circulation pattem change considerabliy, gives a natural clue, properly to classify and tie together karst breakdown settings, speleogenetic styles and breakdown development mechanisms. Subsidence hazards vary substantially between the different karst types, so that classifying individual karst according to typology can provide an integrated general assessment. This provides a useful basis for selection and realization of region- and site-specific assessment schemes and management strategies. Intrastratal karst types, subjacent karst in particular, are most potent in generating subsidence problems. Exposed karst types, especially open karst, are the least likely to pose subsidence hazard problems, despite them being recognized more obviously as karstic areas.

Intrastratal karst at the Waste Isolation Pilot Plant site, southeastern New Mexico, 2003, Hill C. A.

Mechanisms of karst breakdown formation in the gypsum karst of the fore-Ural region, Russia (from observations in the Kungurskaja Cave), 2004, Andrejchuk V. N. , Klimchouk A. B.

The fore-Ural is a classical region of intrastratal gypsum karst. The intensive development of karst in the Permian gypsums and anhydrites causes numerous practical problems, the subsidence hazard being the most severe.
Mechanisms of karst breakdown formation were studied in detail in the Kunguskaya Cave area. The cave and its setting are characteristic to the region and, being a site of detailed stationary studies for many years, the cave represents a convenient location for various karst and speleological investigations.
Breakdown structures related to cavities of the Kungurskaya Cave type develop by two mechanisms: gravitational (sagging and fall-in of the ceilings of cavities) and filtrational/gravitational (crumbling and fall-in of the ceilings of vertical solution pipes, facilitated by percolation). The former implies upward stoping of the breakout roof and cessation of the process at some height above the floor of the cave due to complete infilling by fallen clasts. This mechanism cannot generate surface deformation where the overburden thickness exceeds a certain value. The latter mechanism implies that breakdown will almost inevitably express itself at the surface, most commonly as a sudden collapse, even where the thickness of the overburden is large. These mechanisms result in different appearance, distribution and further evolution of the respective surface forms, so that subsidence hazard assessment should be performed differently for these types of breakdown.
The conclusions reached by this study are representative for the region, although some of them bear more general validity for intrastratal karst conditions. This study underlines the ultimate importance of speleological investigations to the understanding of karst breakdown mechanisms.


Intrastratal karst at the WIPP Site, southeastern New Mexico, 2006, Hill C. A.

Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective., 2007, Klimchouk A. B.

This book provides an overview of the principal environments, main processes and manifestations of hypogenic speleogenesis, and refines the relevant conceptual framework. It consolidates the notion of hypogenic karst as one of the two major types of karst systems (the other being epigenetic karst). Karst is viewed in the context of regional groundwater flow systems, which provide the systematic transport and distribution mechanisms needed to produce and maintain the disequilibrium conditions necessary for speleogenesis. Hypogenic and epigenic karst systems are regularly associated with different types, patterns and segments of flow systems, characterized by distinct hydrokinetic, chemical and thermal conditions. Epigenic karst systems are predominantly local systems, and/or parts of recharge segments of intermediate and regional systems. Hypogenic karst is associated with discharge regimes of regional or intermediate flow systems.

Various styles of hypogenic caves that were previously considered unrelated, specific either to certain lithologies or chemical mechanisms are shown to share common hydrogeologic genetic backgrounds. In contrast to the currently predominant view of hypogenic speleogenesis as a specific geochemical phenomenon, the broad hydrogeological approach is adopted in this book. Hypogenic speleogenesis is defined with reference to the source of fluid recharge to the cave-forming zone, and type of flow system. It is shown that confined settings are the principal hydrogeologic environment for hypogenic speleogenesis. However, there is a general evolutionary trend for hypogenic karst systems to lose their confinement due to uplift and denudation and due to their own expansion. Confined hypogenic caves may experience substantial modification or be partially or largely overprinted under subsequent unconfined (vadose) stages, either by epigenic processes or continuing unconfined hypogenic processes, especially when H2S dissolution mechanisms are involved.

Hypogenic confined systems evolve to facilitate cross-formational hydraulic communication between common aquifers, or between laterally transmissive beds in heterogeneous soluble formations, across cave-forming zones. The latter originally represented low-permeability, separating units supporting vertical rather than lateral flow. Layered heterogeneity in permeability and breaches in connectivity between different fracture porosity structures across soluble formations are important controls over the spatial organization of evolving ascending hypogenic cave systems. Transverse hydraulic communication across lithological and porosity system boundaries, which commonly coincide with major contrasts in water chemistry, gas composition and temperature, is potent enough to drive various disequilibrium and reaction dissolution mechanisms. Hypogenic speleogenesis may operate in both carbonates and evaporites, but also in some clastic rocks with soluble cement. Its main characteristic is the lack of genetic relationship with groundwater recharge from the overlying or immediately adjacent surface. It may not be manifest at the surface at all, receiving some expression only during later stages of uplift and denudation. In many instances, hypogenic speleogenesis is largely climate- independent.

There is a specific hydrogeologic mechanism inherent in hypogenic transverse speleogenesis (restricted input/output) that suppresses the positive flow-dissolution feedback and speleogenetic competition in an initial flowpath network. This accounts for the development of more pervasive channeling and maze patterns in confined settings where appropriate structural prerequisites exist. As forced-flow regimes in confined settings are commonly sluggish, buoyancy dissolution driven by either solute or thermal density differences is important in hypogenic speleogenesis.

In identifying hypogenic caves, the primary criteria are morphological (patterns and meso-morphology) and hydrogeological (hydrostratigraphic position and recharge/flow pattern viewed from the perspective of the evolution of a regional groundwater flow system). Elementary patterns typical for hypogenic caves are network mazes, spongework mazes, irregular chambers and isolated passages or crude passage clusters. They often combine to form composite patterns and complex 3- D structures. Hypogenic caves are identified in various geological and tectonic settings, and in various lithologies. Despite these variations, resultant caves demonstrate a remarkable similarity in cave patterns and meso-morphology, which strongly suggests that the hydrogeologic settings were broadly identical in their formation. Presence of the characteristic morphologic suites of rising flow with buoyancy components is one of the most decisive criteria for identifying hypogenic speleogenesis, which is much more widespread than was previously presumed. Hypogenic caves include many of the largest, by integrated length and by volume, documented caves in the world.

The refined conceptual framework of hypogenic speleogenesis has broad implications in applied fields and promises to create a greater demand for karst and cave expertise by practicing hydrogeology, geological engineering, economic geology, and mineral resource industries. Any generalization of the hydrogeology of karst aquifers, as well as approaches to practical issues and resource prospecting in karst regions, should take into account the different nature and characteristics of hypogenic and epigenic karst systems. Hydraulic properties of karst aquifers, evolved in response to hypogenic speleogenesis, are characteristically different from epigenic karst aquifers. In hypogenic systems, cave porosity is roughly an order of magnitude greater, and areal coverage of caves is five times greater than in epigenic karst systems. Hypogenic speleogenesis commonly results in more isotropic conduit permeability pervasively distributed within highly karstified areas measuring up to several square kilometers. Although being vertically and laterally integrated throughout conduit clusters, hypogenic systems, however, do not transmit flow laterally for considerable distances. Hypogenic speleogenesis can affect regional subsurface fluid flow by greatly enhancing initially available cross- formational permeability structures, providing higher local vertical hydraulic connections between lateral stratiform pathways for groundwater flow, and creating discharge segments of flow systems, the areas of low- fluid potential recognizable at the regional scale. Discharge of artesian karst springs, which are modern outlets of hypogenic karst systems, is often very large and steady, being moderated by the high karstic storage developed in the karstified zones and by the hydraulic capacity of an entire artesian system. Hypogenic speleogenesis plays an important role in conditioning related processes such as hydrothermal mineralization, diagenesis, and hydrocarbon transport and entrapment.

An appreciation of the wide occurrence of hypogenic karst systems, marked specifics in their origin, development and characteristics, and their scientific and practical importance, calls for revisiting and expanding the current predominantly epigenic paradigm of karst and cave science.


Hypogene Speleogenesis, 2013, Klimchouk, A. B.

Recognition of the wide occurrence, significance, and specific characteristics of hypogene speleogenesis during last twodecades signifies a major paradigm shift in karst science, previously overwhelmingly dominated by epigene concepts and models. Hypogene karst is one of the fundamental categories of karst, at least of equal importance with more familiar epigenic karst. Hypogene and epigenic karst systems are regularly associated with different types, patterns, and segments off low systems, which are characterized by distinct hydrokinetic, chemical, and thermal conditions. Hypogene speleogenesis is the formation of solution-enlarged permeability structures by water that recharges thecavernous zone from below, independent of recharge from the overlying or immediately adjacent surface. It develops mainly in leaky confined conditions, although it may continue through unconfined ones. Hydraulic communication along cross-formational flow paths, across lithological boundaries, different porosity systems, and flow regimes allows deeper ground waters in regional or intermediate flow systems to interact with shallower and more local systems, permittinga variety of dissolution mechanisms to operate. A specific hydrogeologic mechanism acting in hypogenic transverse speleogenesis (restricted input/output) suppresses the positive flow-dissolution feedback and speleogenetic competition seen in the epigenic development. Hypogenic caves occur in different soluble rocks in a wide range of geological and tectonic settings, basinal throughorogenic. Overall patterns of cave systems are strongly guided by the spatial distribution of the initial (prespeleogenetic) permeability features and hydrostratigraphic barriers and interfaces within the soluble and adjacent units, by the mode of water input to, and output from, cave-forming zones and by the overall recharge–discharge configuration in the multiple aquifer system. Because of their transverse nature, hypogene caves have a clustered distribution in plan view, althoughinitial clusters may merge laterally across considerable areas. Hypogene caves display remarkable similarity in their pattern sand mesomorphology, strongly suggesting that the type of flow system is the primary control. The rapidly evolving understanding of hypogene speleogenesis has broad implications for many applied fields such asprospecting and characterization of hydrocarbon reservoirs, groundwater management, geological engineering, and mineral resources industries


Evolution of Intrastratal Karst and Caves in Gypsum, 2013, Klimchouk, A. B.

The term ‘intrastratal karst’ denotes a series of evolutionary karst types corresponding to successive stages of karst developmentin a soluble rock while it moves back to exposure after being buried by younger strata. The major boundaryconditions, the overall circulation pattern, and extrinsic factors and intrinsic mechanisms of karst development appear tochange considerably between the stages, resulting in characteristic styles of cave development and surface karst morphology,particularly distinct in case of gypsum karst.As gypsum is much more soluble than carbonates, it does not survive long in outcrops beyond arid areas. Wheregypsum is exposed to the surface with no substantial karstification formed during various stages of reburial, the developmentof epigene solution porosity in this rock is hindered due to the fast dissolution, being limited to flow paths in whichthe breakthrough conditions can be attained quickly. However, karst processes in gypsum develop extensively in intrastratalkarst settings, with inheritance from the deep-seated stage through the denuded one. Karstification may commence in anystage of intrastratal development, and during the next successive stage, the process, although in changed conditions, will beaffected significantly by the preformed solution porosity. Speleogenesis in deep-seated gypsum karst is exclusively hypogene.In subjacent karst, both hypogene and epigene speleogenesis may operate depending on the locally prevailing flowregime, but hypogene speleogenesis still dominates. In entrenched and denuded karst types, speleogenesis is overwhelminglyepigenic, but it is greatly facilitated by the presence of solution porosity inherited from the previous stages.Diverse and expressive karst landforms related to subsurface conduits evolve through different stages of the intrastratal karstdevelopment.The subsidence hazard in regions underlain by gypsum differs substantially between the karst types, so that one canobtain a kind of integrated general hazard assessment by classifying a given individual karst according to its evolution state.In general, various types of intrastratal karst, subjacent karst in particular, are the most potent in generating subsidence problems, whereas exposed karst types, particularly open karst, are the least prone to subsidence


Results 1 to 13 of 13
You probably didn't submit anything to search for