Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That contaminant plume is an elongated body of ground water containing contaminants, emanating and migrating from a point source within a hydrogeologic unit(s) [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for lago-mare (Keyword) returned 5 results for the whole karstbase:
Messinian event in the black sea, 1979, Hsu Kenneth J. , Giovanoli Federico,
Three holes were drilled during the 1975 DSDP Leg 42B drilling the Black Sea. A section from Hole 380, at 2107 m water depth on the western edge of the abyssal plain, is 1074 m thick, and provides the most complete stratigraphic section. Dating of the sediments is based upon (1) fossil evidence from pollen, crustaceans, benthic foraminifera, and diatoms, (2) correlation with climatic changes and with unusual isochronous events that have been dated elsewhere, (3) paleomagnetic data, and (4) estimates of sedimentation rate.The history of Black Sea sedimentation recorded by the DSDP cores includes black shale sedimentation during the Late Miocene, followed by periodic chemical sedimentation from Late Miocene to Early Quaternary, and a change to dominantly terrigenous sedimentation from the Middle Quaternary. These hemipelagic and turbiditic sediments were deposited in lacustrine and brackish marine environments. The Messinian sediments, however, consist of stromatolitic dolomite, oolitic sands, and coarse gravels, deposited in supratidal and intertidal environments. The intercalation of the shallow-water sediments in a deep-water sequence suggests a drastic lowering of the water-level within the Black Sea basin during the Messinian so that the edge of the present abyssal plain was then the edge of a shallow lake.The Messinian draw-down phase of the Black Sea was in existence for about 100,000 years during the Lago-Mare stage of the salinity crisis. The evaporated waters formed an alkaline lake before it was drowned by a brackish marine transgression correlative to the Trubi transgression of the Mediterranean

The Messinian salinity crisis: Looking for a new paradigm?, 2006, Roveri M. , Manzi V. ,
The importance of the sedimentary record of Messinian events in the Apennines foredeep is due to its geological and structural settings, which allow the reconstruction of the relationships between marginal and basinal settings and provide fundamental insights into some important issues. A geologic-stratigraphic model of the Messinian Apennine foredeep indicating a possible solution for closing the last `Messinian gap' is here presented. Moreover, the establishment of a preliminary high-resolution stratigraphy for the terminal Lago Mare stage allows us to attempt Mediterranean-scale correlations across different structural settings.The Messinian evolution of the Apennine foredeep and some considerations of adjacent areas suggest the great importance of tectonic deformation in controlling Messinian events. The intra-Messinian unconformity is a common feature of the marginal basins of the Mediterranean, and it is associated in many cases to the collapse and resedimentation of primary evaporites. The genesis of such unconformity seems to be strictly related to a general tectonic reorganization of the Mediterranean area. Preliminary observation on the stratigraphy of the Lago Mare stage suggest that the high-frequency lithological cyclicity observed in the non-marine deposits of this stage, as well as the superimposed transgressive trend, are common to many Mediterranean basins. These characteristic features might reflect the interplay between a longer-term tectonic trend and higher-frequency, precession-related, climatic changes; this could represent a fundamental tool for establishing a high-resolution stratigraphic framework of the latest Messinian allowing long-distance correlations between terrestrial and marine ecosystems and hence more accurate palaeoenvironmental studies

Changing perspectives in the concept of 'Lago-Mare' in Mediterranean Late Miocene evolution, 2006, Orszagsperber Fabienne,
The Cenozoic Alpine orogeny caused the partition of Tethys into several basins. During the Late Neogene, the Mediterranean attained its final configuration, whereas, eastwards, the Paratethys, isolated from the World Ocean, disintegrated progressively into a series of smaller basins. As a result, an endemic fauna developed in these basins, mainly composed of brackish to freshwater faunas, indicating an environment affected by changes in water salinity. These small basins of the Paratethys were named 'Sea-Lakes' by Andrusov [Andrusov, D., 1890. Les Dreissenidae fossiles et actuelles d'Eurasie. Geol. min. 25, 1-683 (in Russian)]. Subsequently this name was translated into 'Lac-Mer' [Gignoux, M., 1936. Geologie stratigraphique, 2[deg]edition, Masson, Paris].In the Mediterranean isolated from the Atlantic at the end of the Miocene (Messinian), thick evaporites deposited, consisting of a marine Lower Evaporite unit and an Upper Evaporite unit, mainly of continental origin. Ruggieri [Ruggieri, G., 1962. La serie marine pliocenica e quaternaria della Val Marecchia. Atti Acad. Sci. Lett. Arti. Palermo, 19, 1-169.] used the term 'Lago-Mare', to characterize the brackish to fresh water environment which occurred within the Mediterranean at the end of the Messinian.During recent decades, numerous scientific investigations concerning the history of the Messinian within the Mediterranean were devoted to the understanding of conditions prevailing after the deposition of the marine evaporites. Brackish to freshwater faunas are found in several outcrops and boreholes in the Mediterranean, both in the uppermost beds of gypsum and inter-bedded within the clastic sediments of the Upper Evaporite Unit, immediately preceeding the flooding by the marine Pliocene waters. These faunas, because of their similarities with the fauna described in the Paratethys, were named 'Paratethyan', or 'Caspi-brackish' fauna, this leading some authors to imply a migration of these fauna from Paratethys to the Mediterranean. However, others refute this hypothesis.New data induced some researchers to consider that exchanges existed between the Mediterranean and the Eastern Paratethys and also between the Mediterranean and the Atlantic Ocean at the Miocene-Pliocene transition. These investigations now take advantage of the accurate time scales established by authors (biostratigraphy, cyclostratigraphy, magnetostratigraphy), allowing good stratigraphic correlations between the Mediterranean and the Paratethys, and precisions on the geodynamic evolution of this area.Furthermore, sediments at the base of the Zanclean (MPl1), locally containing brackish to fresh water faunas conducted authors to attribute this formation to an infra- or pre-Pliocene and also to a Lago-Mare 'event'.Thus, the 'Lago-Mare' concept drifted from its original meaning, and is evolving because of progresses in the understanding of the Mediterranean geodynamics and the adjacent areas during the Miocene-Pliocene transition

Reconstruction of the paleoenvironmental changes around the Miocene-Pliocene boundary along a West-East transect across the Mediterranean, 2006, Pierre Catherine, Caruso Antonio, Blancvalleron Marie Madeleine, Rouchy Jean Marie, Orzsagsperber Fabienne,
In order to reconstruct the environmental changes at the end of the Messinian salinity crisis, a multidisciplinary study has been carried out with a high sampling resolution of the late Messinian-early Zanclean (Zone MPl 1) sediments along a West-East Mediterranean transect. The studied examples comprise sections from southern Spain (Vera/Almanzora), Balearic Basin (ODP Site 975), Tyrrhenian Basin (ODP Site 974), Sicily (Eraclea Minoa), Zakynthos (Kalamaki), Corfu (Aghios Stefanos), Crete (Aghios Vlasis). Previously analyzed sections from the Levantine Basin (Cyprus and ODP Sites 968 and 969) are used for comparison. The sections have been correlated using planktonic foraminiferal assemblages, sedimentological and stable isotope variations, and compared to the astronomical cyclicity defined in the Miocene-Pliocene boundary stratotype of Eraclea Minoa, Sicily. Variations of CaCO3 content, stable isotopes of carbonates ([delta]18O, [delta]13C), and foraminiferal assemblages indicate similar environmental transition at the Miocene-Pliocene boundary in all of the investigated sections.The latest Messinian deposits are barren of fossils or characterized by only reworked planktonic foraminifers, except for the sporadic presence of Ammonia tepida, brackish or lacustrine ostracods and brackish mollusks typical of the 'Lago-Mare' facies. The oxygen and carbon isotopic compositions of carbonates usually exhibit large variations with dominantly low [delta] values indicating freshwater dilution. The earliest Pliocene (MPl 1, cycle 1) shows a rapid and progressive increase of the [delta]18O values, which indicates the restoration of marine conditions after the Lago-Mare event. Normal marine environments were definitely established and stabilized at the top of cycle 1.These data confirm that the inflow of marine waters occurred contemporaneously within the whole Mediterranean at the base of Pliocene, although stable marine conditions occurred only about 20[no-break space]kyrs later

The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario, 2006, Rouchy Jean Marie, Caruso Antonio,
After a long period of controversial debate about the interpretation of the Messinian salinity crisis (MSC), a near consensus existed since the ODP Leg 42A for a model keeping the major lines of the deep basin-shallow water model initially proposed by Hsu et al. (1973). The knowledge of the crisis was improved since the 1995s by the availability of a very accurate astronomically calibrated timescale. The debate about its interpretation was then reactivated by several new scenarios that questioned most the major aspects of the previous classical models. The updated re-examination of the most salient features along with consideration of the hydrological requirements for evaporite deposition allow us to assess the viability of the new models. We propose an integrated scenario that revives the key points of the previous model with new statements about the chronology, depositional settings, hydrological mechanisms, consequences and correlations with the global changes. A model implying two main stages of evaporite deposition that affected successively the whole basin with a slight diachronism matches better the whole dataset. The distribution of the evaporites and their depositional timing were constrained by the high degree of paleogeographical differentiation and by the threshold effects that governed the water exchanges. It is assumed that the central Sicilian basin was a deep basin located in a marginal position with regard to the deepest central basins. The restriction of the Mediterranean was predominantly under a tectonic control, but the complex development of the evaporitic crisis implied the interplay of both glacio-eustatic changes and fluctuations of the circum-Mediterranean climate.The first evaporitic stage (lower evaporites) that includes the deposition of the thick homogeneous halite unit with K-Mg salt interbeds in the deepest basins is correlated with the major evaporative drawdown and higher aridity, and occurred during the glacial period recorded in the ocean sediments between 6.3 and 5.6 Ma. The deposition of the potash in Sicily is tentatively linked to the two major glacial peaks TG 20 and TG 22, while the end of this first stage is linked to the peak TG 12. The second stage (upper evaporites) correlates with the interval of warming and global sea level rise recorded in the ocean since 5.6-5.5 Ma onwards. During this second stage, freshwater contribution increased and culminated by the latest Messinian dilution, i.e. the Lago-Mare event, as the result of the worsened tectonically driven closure of the Atlantic gateways combined to an evolution towards wetter climate conditions at least on the mountainous peripheral areas. In fact, reduced inputs of seawater continued to enter at least episodically the basin through the MSC explaining the sporadic presence of marine organisms. These inputs reached their lowest value and practically ceased during the latest Messinian dilution, just before the abrupt restoration of stable open marine conditions at the beginning of the Zanclean.A polyphased erosional surface affected the Mediterranean margins during the MSC with several critical episodes. The major episode related to the greatest water level fall, more than 1000 m, occurred during the deposition of the lower evaporites, from the onset of the evaporite deposition till the end of the first stage. Erosional processes remained active during the second evaporitic stage especially whenever the basin dried-up and a last important event marked by the karstification of the evaporites developed during the latest Messinian dilution just before the Early Zanclean reflooding that filled the erosional morphology

Results 1 to 5 of 5
You probably didn't submit anything to search for