Legends describing a Great Flood are found in the narratives of several world religions, and the biblical account of Noah's Flood is the surviving heir to several versions of the ancient Mesopotamian Flood Myth. Recently, the story of the biblical deluge was connected to the Black Sea, together with the suggestion that the story's pre-Mesopotamian origins might be found in the Pontic basin [Ryan, W.B.F., Pitman, III, W.C., 1998. Noah's Flood: The New Scientific Discoveries About the Event That Changed History. Simon and Schuster, New York]. Based on the significance of this flood epic in the Judeo-Christian tradition, popular interest surged following publication of the idea.Currently, two Great Flood scenarios have been proposed for the Black Sea: (1) an Early Holocene event caused by catastrophic Mediterranean inflow at 7.2 ky BP (initial hypothesis of [Ryan et al., 1997. An abrupt drowning of the Black Sea shelf. Marine Geology 138, 119-126]) or 8.4 ky BP (modified hypothesis of [Ryan et al., 2003. Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Science 31, 525-554.); and (2) a Late Pleistocene event brought on by Caspian influx between 16 and 13 ky BP [Chepalyga, A.L., 2003. Late glacial Great Flood in the Black Sea and Caspian Sea. GSA Annual Meeting and Exposition, 2-5 November 2003, Seattle, USA, p. 460]. Both hypotheses claim that the massive inundations of the Black Sea basin and ensuing large-scale environmental changes had a profound impact on prehistoric human societies of the surrounding areas, and both propose that the event formed the basis for the biblical Great Flood legend.This paper attempts to determine whether the preponderance of existing evidence sustains support for these Great Floods in the evolution of the Black Sea. Based upon established geological and paleontological data, it finds that the Late Pleistocene inundation was intense and substantial whereas the Early Holocene sea-level rise was not. Between 16 and 13 ky BP, the Late Neoeuxinian lake (the Late Pleistocene water body in the Pontic basin pre-dating the Black Sea) increased rapidly from ~-14 to -50 m (below the present level of the Black Sea), then rose gradually to ~-20 m by about 11 ky BP. At 11-10 ky BP (the Younger Dryas), it dropped to ~-50 m. When the Black Sea re-connected with the Sea of Marmara at about 9.5 ky BP, inflowing Mediterranean water increased the Black Sea level very gradually up to ~-20 m, and in so doing, it raised the salinity of the basin and brought in the first wave of Mediterranean immigrants. These data indicate no major drawdown of the Black Sea after the Younger Dryas, and they do not provide evidence for any catastrophic flooding of the Black Sea in the Early Holocene.In addition, available archaeological and paleoenvironmental evidence from the Pontic region reveal no recognizable changes in population dynamics between 14 and 6 ky BP that could be linked to an inundation of large magnitude [Dolukhanov, P., Shilik, K., 2006. Environment, sea-level changes, and human migrations in the northern Pontic area during late Pleistocene and Holocene times. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 297-318; Stanko, V.N., 2006. Fluctuations in the level of the Black Sea and Mesolithic settlement of the northern Pontic area. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 371-385]. More specifically, Mesolithic and early Neolithic archaeological data in southeastern Europe and Ukraine give no indications of shifts in human subsistence or other behavior at the time of the proposed catastrophic flood in the Early Holocene [Anthony, D., 2006. Pontic-Caspian Mesolithic and Early Neolithic societies at the time of the Black Sea Flood: A small audience and small effects. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 345-370; Dergachev and Dolukhanov, 2006. The Neolithization of the North Pontic area and the Balkans in the context of the Black Sea Floods. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 489-514]
Deep-water sediments of the Black Sea deposited during Late Pleistocene and Holocene time are distinguished by three sedimentary units: (1) a microlaminated coccolith ooze mainly consisting of Emiliania huxleyi; (2) a sapropel; and (3) a banded lutite. The base of the first unit lies at 3,000 years B.P., that of the second at 7,000 years B.P., and that of the third at least at about 25,000 years B.P. Fossils and geochemical criteria are used to decipher the environmental events of this time period. Beginning with the base of the section dated at about 25,000 years B.P. we witness the final stage of metamorphosis from anoxic marine to oxic freshwater conditions. By the time this stage ended, about 22,000 years B.P., the Black Sea had become a truly freshwater habitat. The lake phase lasted about 12,000 to 13,000 years. Sedimentation rates were in the order of 1 m/103 years, but began to decrease as sea level rose during the last 5,000 years of this phase (9,000-15,000 years B.P.). Starting at about 9,000 years B.P. and continuing to 7,000 years B.P., Mediterranean waters occasionally spilled over the Bosporus as a consequence of ice retreat and sea level rise. This marked the beginning of a gradual shift from freshwater to marine, and from well aerated to stagnant conditions. At about 7,000 years B.P. when deposition of unit 2 started, the H2S zone was well established. Sedimentation rates dropped to 10 cm/103 years. Environmental conditions similar to those of today finally became established around 3,000 years B.P., almost exactly the time when Jason and the Argonauts sailed through the Bosporus in search of the Golden Fleece
The coastal limestones of Kenya extend approximately 180 km N-S from Malindi to the Tanzanian border. They are at least 20 m thick and may be subdivided into sedimentary units representing major periods of marine deposition punctuated by sub-aerial erosion. Their foundations are formed by thick fluvial and aeolian quartz sands but there is local evidence of marine deposition following these. In the main limestone unit, deposited about 240,000 years ago, initial high energy shallow-shelf deposition was replaced by quiet water sediments with scattered corals. Sea level stood about 8 m higher than at present. Quartzose sands were confined to western areas. A return to shallow water heralded a new phase of emergence and erosion, producing karst surfaces and sub-aerial sediments. These are overlain by herring-bone cross-bedded quartz-rich calcarenites which were the products of a tidally dominated shelf and, at Watamu and Wasini, pass upwards into aeolian dune deposits. However, these were also emersed and subject to karst erosion before deposition of a further widespread marine limestone. Within this, coral knolls are well developed. Much of the sediment accumulated in shallow water, but the ecological succession indicates that knolls were at times in deeper waters. These deposits formed about 125,000 years ago when sea level ultimately stood 15-20 m above its present position. More recently in the area sea level has again fallen. However, the descent was not continuous and pauses were marked by marine terrace formation and subsequent karst erosion with sub-aerial deposition. Brief reversals caused both terraces and sediments to be overlain by thin marine deposits. Sea level paused at its present position about 30,000 years ago when the present reef platform was probably defined. It continued to fall to a maximum of about-120 m before rising to its existing level 7000 years ago and beginning the current cycle of sediment accumulation
The Pliocene to Holocene limestones of Barbuda have formed on a wide, shallow, outlying bank of the Lesser Antilles island arc, some 50 km east of the older axis of the Limestone Caribbees and 100 km east of the newer axis of the active Volcanic Caribbees. Contrasts with neighbouring islands of similar size include the lack of exposed igneous basement or mid-Tertiary sediments, the dominance of younger flat-lying carbonates, and the greater frequency of earthquake shocks. The history of emergence of the island has been studied through aerial reconnaissance, mapping, logging, hand coring, facies and microfacies analysis. These show a pattern of progressively falling high sea level stands (from more than 50 m down to the present level) on which are superimposed at least three major phases of subaerial exposure, when sea levels were close to, or below, their present level. This sequence can be summarized as follows: 1, bank edge facies (early Pliocene Highlands Formation) deposited at not more than c. 50-100 m above the present sea level; 2, emergence with moderate upwarping in the north, associated with the Bat Hole subaerial phase forming widespread karst; 3, older Pleistocene transgression with fringing reefs and protected bays formed at l0 to l5 m high sea level stands (Beazer Formation); 4, Marl Pits subaerial phase with widespread karst and soil formation; 5, late Pleistocene transgression up to m high stand with fringing and barrier reefs, protected backreefs and bays (Codrington Formation Phase I); 6, gradual regression resulting in emergence of reefs, enclosure of lagoons, and progradation of beach ridges at heights falling from c. 5 m to below present sea level (Codrington Phase II); 7, Castle Bay subaerial phase produced karst, caliche and coastal dunes that built eastwards to below present sea level; and 8, Holocene transgression producing the present mosaic, with reefs, lagoons and prograding beach ridge complexes, with the present sea level reached before c. 4085 years BP. The evidence suggests that slight uplift took place in the north of the island after early Pliocene times. Subsequent shoreline fluctuations are consistent with glacio-eustatic changes in sea level, indicating that the island has not experienced significant uplift during the Quaternary