Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That flattener is a cave passage, which though wide, is so low that movement is only possible in a prone position [10]. see also crawl.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for matrix porosity (Keyword) returned 15 results for the whole karstbase:
Showing 1 to 15 of 15
Exchange of water between conduits and matrix in the Floridan aquifer, 2001, Martin J. B. , Dean R. W. ,
Flow through carbonate aquifers may be dominated by conduits where they are present, by intergranular or fracture porosity where conduits are missing, or may occur in conduits and matrix porosity where both are well developed. In the latter case, the exchange of water between conduits and matrix could have important implications for water management and hydrodynamic modeling. An extensive conduit system has been mapped by dye trace studies and cave diving exploration at the Santa Fe Sink/Rise system located in largely unaltered rocks of the Floridan aquifer of north-central Florida. In this area, the Santa Fe River flows underground at the River Sink and returns to the surface similar to 5 km to the south at a first magnitude spring called the River Rise. Limited data show that discharge is greater by 27-96% at the River Rise than at the Sink and that the downstream increase in discharge is inversely related to discharge of the river. Natural SO42- concentrations indicate that similar to 25% of the water discharging from the Rise originates from the Sink during low flow. Conversely, SO42- and other solute concentrations indicate that most of the water discharging from the Rise originates from the Sink during floods. Ar similar to 40% decrease in Na () and Cl (-) concentrations over a 5 1/2-month period at a down-gradient water supply well may reflect flow of dilute flood water from the conduits into and through the matrix at rates estimated to be between 9 and 65 m/day, Calcium concentrations remain constant through time at the well, although flood waters have similar to 90% lower Ca (2) concentrations than ground water, perhaps reflecting dissolution of the matrix rocks. This apparent exchange of water between matrix and conduits is important for regional ground water quality and dissolution reactions, (C) 2001 Published by Elsevier Science B.V

Travel Times Along Selected Flow Paths of the Edwards Aquifer, Central Texas, 2001, Kuniansky E. L. , Fahlquist L. , Ardis A. F.

Flow path travel times in the structurally controlled, karstic Edwards aquifer were estimated using simulated ground-water levels obtained from a finite-element model. For this analysis, simulated monthly ground-water levels were averaged over an 11-year calibration period to minimize the transient effect of short-term recharge and discharge events. The 1978-89 calibration period was characterized by average to wetter-than-average climatic conditions; simulated water-level and spring-flow compared favorably with measured data. Flow paths for which travel times were estimated range from 1,250 to 10,000 feet wide and from about 8 to 180 miles long. Effective aquifer thickness and effective porosity can be highly variable and is poorly defined throughout most of the aquifer. Accordingly, travel-time estimates were computed within known or inferred thicknesses and porosities within known or inferred ranges of 350 to 850 feet and 15 to 35 percent, respectively. The minimum rock matrix porosity for each element was divided by 10 to estimate a minimum time of travel (a worst case time of travel). Travel times range from 14 to 160 years for a flow path from the Blanco River Basin to San Marcos Springs and from 350 to 4,300 years for a flow path from the West Nueces River Basin to Comal Springs. Travel times near the minimum of the ranges are similar in magnitude to those determined from tritium isotopes in spring water, thus supporting the hypothesis that effective porosity and effective thickness of the aquifer is less than the respective ranges. 


Exchange of Matrix and Conduit Water with Examples from the Floridan Aquifer, 2001, Martin J. D. , Screaton E. J.

Rapid infiltration of surface water and contaminants occurs in karst aquifers because of extensive conduit development, but contamination of ground water supplies requires loss of conduit water to the matrix. This process is also important for ground water management and for dissolution and diagenetic reactions. Many factors control exchange between conduits and matrix including the head gradient between matrix and conduits, the permeability of the matrix, the gradients of the regional water table and the conduits, and the relative elevation of the conduits and regional water table. The Floridan Aquifer, which is characterized by high matrix porosity and permeability, provides several examples. 


Identifying the flow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental O-18 and H-3 isotopes, 2002, Maloszewski P. , Stichler W. , Zuber A. , Rank D. ,
The Schneealpe karst massif of Triassic limestones and dolomites with the altitude up to 1800 m a.s.l., situated 100 km SW of Vienna in Kalkalpen, is the main drinking water resource for the city. The catchment area of about 23 km(2) is drained by two springs: the Wasseralmquelle (196 Vs) and the Siebenquellen (310 1/s). This karstic aquifer is approximated by two interconnected parallel flow systems of: (a) a fissured-porous aquifer, and (b) karstic channels. The fissured-porous aquifer is of a high storage capacity and contains mobile water in the fissures and stagnant water in the porous matrix. The water enters this system at the surface and flows through it to drainage channels, which are regarded as a separate flow system, finally drained by both springs. The channels are also connected with sinkholes, which introduce additional water directly from the surface, Measurements of O-18 and tritium in precipitation and springs were modelled by a combined application of lumped-parameter models. Modelling yielded information on the mean values of the following hydraulic parameters: (1) The volume of water in the whole catchment area is 255 X 10(6) m(3), of which about 1.8 X 10(6) m(3) are in channels and 253 X 10(6) m(3) in the fissured-porous aquifer. (2) The total volumetric flow rate is 506 1/s, of which 77 1/s comprises direct flow from sinkholes to springs and 429 1/s are contributed to fissured-porous aquifer. (3) As the volume of the massif is 16.6 x 10 m(3), the total water saturated porosity (fissures and micropores of the matrix) is 1.5% and the channel porosity is about 0.01%. (C) 2002 Elsevier Science B.V. All rights reserved

Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers, 2005, Einsiedl F,
Concentration breakthrough curves obtained from a tracer test and time series of environmental tracers were analyzed to characterize slow and preferential water flow in a karst aquifer of the Franconian Alb, Germany. Tritium (H-3) and chemical tracers (uranine, bromide, strontium) were measured during low flow conditions and a storm runoff event. The mean transit time of water along the conduits was determined using bromide. Environmental tracer data collected between 1969 and 2003 were modeled to estimate the mean transit time of H-3 in the fissured-porous karst system (diffuse flow). The modelling approach was also used to estimate the water volume of the karst system and the conduits. The results suggest that the total water volume in the fissured-porous karst aquifer is in the range of 57 X 10(6) m(3) and approximately 6% of the total water volume is stored in the soil zone and the epikarst. The water storage capacity of the conduits seems to be of minor importance. A mean transit time of bromide in the range of 14 h was calculated for the conduit flow. The fissures and the porous rock matrix have a calculated water saturated porosity of 5.5% and a mean transit time of approximately 62 years was calculated. Thus the porous rock matrix represents the major dilution and storage zone for pollutants in the karst system. (c) 2005 Elsevier B.V. All rights reserved

Influence of depositional setting and sedimentary fabric on mechanical layer evolution in carbonate aquifers, 2006, Graham Wall Brita R. ,
Carbonate aquifers in fold-thrust belt settings often have low-matrix porosity and permeability, and thus groundwater flow pathways depend on high porosity and permeability fracture and fault zones. Methods from sedimentology and structural geology are combined to understand the evolution of fracture controlled flow pathways and determine their spatial distribution. Through this process bed-parallel pressure-solution surfaces (PS1) are identified as a fracture type which influences fragmentation in peritidal and basinal carbonate, and upon shearing provides a major flow pathway in fold-thrust belt carbonate aquifers. Through stratigraphic analysis and fracture mapping, depositional setting is determined to play a critical role in PS1 localization and spacing where peritidal strata have closer spaced and less laterally continuous PS1 than basinal strata. In the peritidal platform facies, units with planar lamination have bed-parallel pressure-solution seams along mudstone laminae. In contrast, burrowed units of peritidal strata have solution seams with irregular and anastamosing geometries. Laminated units with closely spaced bed-parallel solution seams are more fragmented than bioturbated units with anastamosing solution seams. In the deeper-water depositional environment, pelagic settling and turbidity currents are the dominant sedimentation processes, resulting in laterally continuous deposits relative to the peritidal platform environment. To quantify the fracture patterns in the basinal environment, mechanical layer thickness values were measured from regions of low to high bed dip. The results define a trend in which mechanical layer thickness decreases as layer dip increases. A conceptual model is presented that emphasizes the link between sedimentary and structural fabric for the peritidal and basinal environments, where solution seams localize in mud-rich intervals, and the resulting pressure-solution surface geometry is influenced by sedimentary geometry (i.e., stacked fining upward cycles, burrows, planar laminations). In both facies types, laterally continuous PS1 can behave as mechanical layer boundaries. As layer-parallel slip increases to accommodate shear strain in the fold-thrust belt, more PS1 behave as mechanical layer boundaries

Origin and reservoir characteristics of Upper Ordovician TrentonBlack River hydrothermal dolomite reservoirs in New York , 2006, Smith, Jr. , L. B.

In the past decade, more than 20 new natural gas fields have been discovered in laterally discontinuous dolomites of the Upper Ordovician Black River Group in south-central New York. The dolomites form around basement-rooted wrench faults that are detectable on seismic data. Most fields occur in and around elongate faultbounded structural lows interpreted to be negative flower structures. Away from these faults, the formation is composed of impermeable limestone and forms the lateral seal for the reservoirs. In most cases, the faults die out within the overlying Trenton Limestone and Utica Shale. Most porosity occurs in saddle dolomitecoated vugs, breccias, and fractured zones. Matrix porosity is uncommon in the Black River cores described for this study. The patchy distribution around basement-rooted faults and geochemical and fluid-inclusion analyses supports a fault-related hydrothermal origin for the saddle and matrix dolomites. This play went for many years without detection because of its unconventional structural setting (i.e., structural lows versus highs). Using the appropriate integrated structural-stratigraphic-diagenetic model, more hydrothermal dolomite natural gas reservoirs are likely to be discovered in the Black River of New York and in carbonates around the world. 


PINNACLE SYNGENETIC KARST IN NAMBUNG NATIONAL PARK, WESTERN AUSTRALIA, 2009, Lipar Matej
Simultaneous karstifcation and lithifcation of aeolian calcarenite in the southwest coastal part of Western Australia produced syngenetic karstic geomorphological features, such as solution pipes, maze caves, collapsed dolines and pinnacles. $e formation of these geomorphological features was greatly inluenced by the poor cementation and matrix porosity of the calcarenite. Pinnacles, calcarenite pillars up to 5 metres tall with one or more peaks and various types of sediment layers, are most numerous and densest in an area called the Pinnacles in Nambung National Park, Western Australia. Their detailed characteristics and origin are still partially unknown and controversial. Theories suggest that the pinnacles are the final product of one or more of corrosive expansion and coalescence of solution pipes, cemented sediment surrounding the roots, cemented fill of solution pipes, products of focused cementation or remainders of tree-trunks. This article presents descriptions of pinnacles in Nambung National Park based on my feldwork and suggests a polygenetic origin for the pinnacles, with roots playing a major role. The genesis of pinnacles is far more complex than the theories presented so far.

NMR Imaging of Fluid Exchange between Macropores and Matrix in Eogenetic Karst, 2009, Florea L. J. , Cunningham K. J. , Altobelli S.

Sequential time-step images acquired using nuclear magnetic resonance (NMR) show the displacement of deuterated water (D2O) by fresh water within two limestone samples characterized by a porous and permeable limestone matrix of peloids and ooids. These samples were selected because they have a macropore system representative of some parts of the eogenetic karst limestone of the Biscayne Aquifer in southeastern Florida. The macroporosity, created by the trace fossil Ophiomorpha, is principally well connected and of centimeter scale. These macropores occur in broadly continuous stratiform zones that create preferential flow layers within the Hydrogeologic units of the Biscayne. This arrangement of porosity is important because in coastal areas, it could produce a preferential pathway for salt water intrusion. Two experiments were conducted in which samples saturated with D2O were placed in acrylic chambers filled with fresh water and examined with NMR. Results reveal a substantial flux of fresh water into the matrix porosity with a simultaneous loss of D2O. Specifically, we measured rates upward of 0.001 mL/h/g of sample in static conditions, and perhaps as great as 0.07 mL/h/g of sample when fresh water continuously flows past a sample at velocities less than those found within stressed areas of the Biscayne. These experiments illustrate how fresh water and D2O, with different chemical properties, migrate within one type of matrix porosity found in the Biscayne. Furthermore, these experiments are a comparative exercise in the displacement of sea water by fresh water in the matrix of a coastal, karst aquifer since D2O has a greater density than fresh water.


Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams, 2010, Baillycomte Vincent, Martin Jonathan B. , Jourde Hervé, , Screaton Elizabeth J. , Pistre Sé, Verin, Langston Abigail

Karst aquifers are heterogeneous media where conduits usually drain water from lower permeability volumes (matrix and fractures). For more than a century, various approaches have used flood recession curves, which integrate all hydrodynamic processes in a karst aquifer, to infer physical properties of the movement and storage of groundwater. These investigations typically only consider flow to the conduits and thus have lacked quantitative observations of how pressure transfer and water exchange between matrix and conduit during flooding could influence recession curves.

We present analyses of simultaneous discharge and water level time series of two distinctly different karst systems, one with low porosity and permeability matrix rocks in southern France, and one with high porosity and permeability matrix rocks in north-central Florida (USA). We apply simple mathematical models of flood recession using time series representations of recharge, storage, and discharge processes in the karst aquifer. We show that karst spring hydrographs can be interpreted according to pressure transfer between two distinct components of the aquifer, conduit and matrix porosity, which induce two distinct responses at the spring. Water exchange between conduits and matrix porosity successively control the flow regime at the spring. This exchange is governed by hydraulic head differences between conduits and matrix, head gradients within conduits, and the contrast of permeability between conduits and matrix. These observations have consequences for physical interpretations of recession curves and modeling of karst spring flows, particularly for the relative magnitudes of base flow and quick flow from karst springs. Finally, these results suggest that similar analyses of recession curves can be applied to karst aquifers with distinct physical characteristics utilizing well and spring hydrograph data, but information must be known about the hydrodynamics and physical properties of the aquifer before the results can be correctly interpreted.


Evaluation of permeability and non-Darcy flow in vuggy macroporous limestone aquifer samples with lattice Boltzmann methods, 2013, Sukop M. C. , Huang H. , Alvarez P. F. , Variano E. A. , Cunningham K. J.

Lattice Boltzmann flow simulations provide a physics-based means of estimating intrinsic permeability from pore structure and accounting for inertial flow that leads to departures from Darcy’s law. Simulations were used to compute intrinsic permeability where standard measurement methods may fail and to provide better understanding of departures from Darcy’s law under field conditions. Simulations also investigated resolution issues. Computed tomography (CT) images were acquired at 0.8 mm interscan spacing for seven samples characterized by centimeter-scale biogenic vuggy macroporosity from the extremely transmissive sole-source carbonate karst Biscayne aquifer in southeastern Florida. Samples were as large as 0.3 m in length; 7–9 cm-scale-length subsamples were used for lattice Boltzmann computations. Macroporosity of the subsamples was as high as 81%. Matrix porosity was ignored in the simulations. Non-Darcy behavior led to a twofold reduction in apparent hydraulic conductivity as an applied hydraulic gradient increased to levels observed at regional scale within the Biscayne aquifer; larger reductions are expected under higher gradients near wells and canals. Thus, inertial flows and departures from Darcy’s law may occur under field conditions. Changes in apparent hydraulic conductivity with changes in head gradient computed with the lattice Boltzmann model closely fit the Darcy-Forchheimer equation allowing estimation of the Forchheimer parameter. CT-scan resolution appeared adequate to capture intrinsic permeability; however, departures from Darcy behavior were less detectable as resolution coarsened.


Using hydrogeochemical and ecohydrologic responses to understand epikarst process in semi-arid systems, Edwards plateau, Texas, USA, 2013, Schwartz Benjamin F. , Schwinning Susanne, Gerrard Brett, Kukowski Kelly R. , Stinson Chasity L. , Dammeyer Heather C.

The epikarst is a permeable boundary between surface and subsurface environments and can be conceptualized as the vadose critical zone of epigenic karst systems which have not developed under insoluble cover. From a hydrologic perspective, this boundary is often thought of as being permeable in one direction only (down), but connectivity between the flow paths of water through the epikarst and the root systems of woody plants means that water moves both up and down across the epikarst. However, the dynamics of these flows are complex and highly dependent on variability in the spatial structure of the epikarst, vegetation characteristics, as well as temporal variability in precipitation and evaporative demand. Here we summarize insights gained from working at several sites on the Edwards Plateau of Central Texas, combining isotopic, hydrogeochemical, and ecophysiological methodologies. 1) Dense woodland vegetation at sites with thin to absent soils (0-30 cm) is in part supported by water uptake from the epikarst. 2) However, tree transpiration typically becomes water-limited in dry summers, suggesting that the plant-available fraction of stored water in the epikarst depletes quickly, even when sustained cave drip rates indicate that water is still present in the epikarst. 3) Flow paths for water that feeds cave drips become rapidly disconnected from the evaporation zone of the epikarst and out of reach for plant roots. 4) Deep infiltration and recharge does not occur in these systems without heavy or continuous precipitation that exceeds some threshold value. Thresholds are strongly correlated with antecedent potential evapotranspiration and rainfall, suggesting control by the moisture status of the epikarst evapotranspiration zone. The epikarst and unsaturated zone in this region can be conceptualized as a variably saturated system with storage in fractures, matrix porosity, and in shallow perched aquifers, most of which is inaccessible to the root systems of trees, although woody vegetation may control recharge thresholds.


Characteristics of channel networks in unconfi ned carbonate aquifers, 2014,

Carbonate aquifers are some of most challenging to characterize because dissolution can greatly enhance permeability, but its effects are often difficult to determine. This study analyzes data from caves, wells, and tracer tests to explore the extent of solution channel networks and the factors that influence their development. The nonlinear dissolution kinetics of calcite, mixing of waters with different CO2 concentrations, and unstable dissolution fronts all promote the development of solution channels, which are widespread in unconfined carbonate aquifers. Fractures are important for guiding channels at a local scale, but hydraulic gradients are the dominant control at a regional scale. Channels provide continuous, large-aperture pathways that result in rapid groundwater flow. Small channels are much more abundant than large channels, and often account for most of the permeability measured in wells. Caves represent the largest channels; they are more common in limestone than in dolostone, and the development of caves rather than smaller channels is also favored where there is sparse fracturing, low matrix porosity, and the presence of sinking stream recharge rather than percolation recharge. Solution channel networks have fractal properties, and their presence explains why carbonate aquifers have higher permeability than aquifers in any other rock type.


Characteristics of channel networks in unconfined carbonate aquifers, 2014, Worthington, Stephen R. H.

Carbonate aquifers are some of most challenging to characterize because dissolution can greatly enhance permeability, but itseffects are often diffi cult to determine. This study analyzes data from caves, wells, and tracer tests to explore the extent of solution channel networks and the factors that infl uence their development. The nonlinear dissolution kinetics of calcite, mixing of waters with different CO2 concentrations, and unstable dissolution fronts all promote the development of solution channels, which are widespread in unconfi ned carbonate aquifers. Fractures are important for guiding channels at a local scale, but hydraulic gradients are the dominant control at a regional scale. Channels provide continuous, large-aperture pathways that result in rapid groundwater fl ow. Small channels are much more abundant than large channels, and often account for most of the permeability measured in wells. Caves represent the largest channels; they are more common in limestone than in dolostone, and the development of caves rather than smaller channels is also favored where there is sparse fracturing, low matrix porosity, and the presence of sinking stream recharge rather than percolation recharge. Solution channel networks have fractal properties, and their presence explains why carbonate aquifers have higher permeability than aquifers in any other rock type


Hydrogeological Characteristics of Carbonate Formations of the Cuddapah Basin, India, 2014, Farooq Ahmad Dar

Karst hydrogeology is an important field of earth sciences as the aquifers in carbonate formations represent vital resource of groundwater that feeds a large part of the world population particularly in semi-arid climates. These unique aquifers posses peculiar characteristics developed by dissolutional activities of water. Karst aquifers possess a typical hydrogeological setup from surface to subsurface. The aquifers are governed by slow groundwater flow in matrix porosity, a medium to fast flow in fractures and rapid flow in conduits and channels. This large variability in their properties makes the prediction and modeling of flow and transport very cumbersome and data demanding. The aquifers are vulnerable to contamination as the pollutants reach the aquifer very fast with little or no attenuation. The geomorphological and hydrogeological properties in these aquifers demand specific techniques for their study. The carbonate aquifers of the semi-arid Cuddapah basin were characterized based on geomorphological, hydrogeological and hydrochemical investigations. All the formations are highly karstified possessing one of the longest and deepest caves of India and few springs along with unique surface features. Karstification is still in progress but at deeper levels indicated by growing speleothems of different architectural size. Model of karstification indicates that lowering of base level of erosion resulted in the dissolution of deeper parts of the limestone as represented by paleo-phreatic conduits in the region. Moist conditions of the past were responsible for the karst development which has been minimized due to the onset of monsoon conditions. Karst has developed at various elevations representing the past base levels in the region.

The recharge processes in these aquifers are complex due to climatic and karst specificities. Point recharge is the major contributor which enters the aquifer as allogenic water. It replenishes the groundwater very rapidly. Diffuse recharge travels through soil and epikarst zone. Average annual recharge of semi-arid Narji limestone aquifer is 29% of the rainfall which occurs during 5-7 rain events in the year.

The hydrogeochemical characteristic of karst aquifers is quite varaible. A significant difference is observed in hydrochemistry. High concentrations of SO42-, Cl-, NO3- suggests the anthropogenic source particularly from agriculture. Local Meteoric Water Line of δ2H and δ18O isotopes of rain and groundwater shows a slope of 7.02. Groundwater isotope data shows more depletion in heavy isotopes -a result of high evaporation of the area. Groundwater samples show a trend with a slope of 4 and 3.1 for δ2H and δ18O respectively. Groundwater during dry months gets more fractionated due to higher temperature and little rainfall. The irrigated water becomes more enriched and then recharges the aquifer as depleted irrigation return flow. The isotopes show large variation in spring water. Few springs are diffuse or mixed type and not purely of conduit type in the area. Tracer results indicate that the tracer output at the sampling location depends on the hydrogeological setup and the nature of karstification.

The study has significantly dealt with in disclosing the typical characteristics of such aquifer systems and bringing out a reliable as well as detailed assessment of various recharges to the system. The groundwater chemistry has been elaborated to establish the nature of possible hydrochemical processes responsible for water chemistry variation in semi-arid karst aquifer. Such study has thrown light on the aquifers that are on one hand very important from social and strategic point of view and on the hand were left unattended from the detailed scientific studies.


Results 1 to 15 of 15
You probably didn't submit anything to search for